No Arabic abstract
Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antiferromagnets bordering on ferromagnetic order, (ii) a route to an $m=1/3$ magnetization plateau on a square lattice, and (iii) a cascade of phase transitions in a simple model of AgNiO$_2$.
We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets ($S=1/2$) with square, rectangular and triangular structure. Our discussion is based on the $J_1$-$J_2$ type frustrated exchange model and its generalizations. These models are closely related and allow to tune between different phases, magnetically ordered as well as more exotic nonmagnetic quantum phases by changing only one or two control parameters. We survey ground state properties like magnetization, saturation fields, ordered moment and structure factor in the full phase diagram as obtained from numerical exact diagonalization computations and analytical linear spin wave theory. We also review finite temperature properties like susceptibility, specific heat and magnetocaloric effect using the finite temperature Lanczos method. This method is powerful to determine the exchange parameters and g-factors from experimental results. We focus mostly on the observable physical frustration effects in magnetic phases where plenty of quasi-2D material examples exist to identify the influence of quantum fluctuations on magnetism.
We explore the phase diagram and the low-energy physics of three Heisenberg antiferromagnets which, like the kagome lattice, are networks of corner-sharing triangles but contain two sets of inequivalent short-distance resonance loops. We use a combination of exact diagonalization, analytical strong-coupling theories, and resonating valence bond approaches, and scan through the ratio of the two inequivalent exchange couplings. In one limit, the lattices effectively become bipartite, while at the opposite limit heavily frustrated nets emerge. In between, competing tunneling processes result in short-ranged spin correlations, a manifold of low-lying singlets (which can be understood as localized bound states of magnetic excitations), and the stabilization of valence bond crystals with resonating building blocks.
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
We have investigated the high field magnetisation of the frustrated one dimensional compound LiCuVO4. In zero field, LiCuVO4 undergoes long range antiferromagnetic order at T_{N} ~ 2.5 K with a broad short range Schottky type anomaly due to one dimensional correlations in the specific heat at 32 K. Application of a magnetic field induces a rich phase diagram. An anomaly in the derivative of the magnetisation with respect to the applied magnetic field is seen at ~ 7.5 T with H ll c in the long range order phase. We investigated this in terms of a first experimental evidence of a middle field cusp singularity (MFCS). Our numerical DMRG results show that in the parameter range of LiCuVO4 as deduced by inelastic neutron scattering (INS), there exists no MFCS. The anomaly in the derivative of the magnetisation at ~ 7.5 T is therfore assigned to a change in the spin structure from the ab plane helix seen in zero field neutron diffraction.
The spin polarization (P) of high-density InSb two-dimensional electron systems (2DESs) has been measured using both parallel and tilted magnetic fields. P is found to exhibit a superlinear increase with the total field B. This P-B nonlinearity results in a difference in spin susceptibility between its real value Xs and Xgm ~ m*g*(m* and g* are the effective mass and g factor, respectively) as routinely used in experiments. We demonstrate that such a P-B nonlinearity originates from the linearly P-dependent g* due to the exchange coupling of electrons rather than from the electron correlation as predicted for the low-density 2DES.