We propose an experimental setup of ultracold fermions in an optical lattice to determine the pairing gap in a superfluid state and the spin ordering in a Mott-insulating state. The idea is to apply a periodic modulation of the lattice potential and to use the thereby induced double occupancy to probe the system. We show by full time-dependent calculation using the adaptive time dependent density-matrix renormalization group method that the position of the peak in the spectrum of the induced double occupancy gives the pairing energy in a superfluid and the interaction energy in a Mott-insulator, respectively. In the Mott-insulator we relate the spectral weight of the peak to the spin ordering at finite temperature using perturbative calculations.
Understanding the magnetic response of the normal state of the cuprates is considered a key piece in solving the puzzle of their high-temperature superconductivity. The essential physics of these materials is believed to be captured by the Fermi-Hubbard model, a minimal model that has been realized with cold atoms in optical lattices. Here we report on site-resolved measurements of the Fermi-Hubbard model in a spin-imbalanced atomic gas, allowing us to explore the response of the system to large effective magnetic fields. We observe short-range canted antiferromagnetism at half-filling with stronger spin correlations in the direction orthogonal to the magnetization, in contrast with the spin-balanced case where identical correlations are measured for any projection of the pseudospin. The rotational anisotropy of the spin correlators is found to increase with polarization and with distance between the spins. Away from half-filling, the polarization of the gas exhibits non-monotonic behavior with doping for strong interactions, resembling the behavior of the magnetic susceptibility in the cuprates. We compare our measurements to predictions from Determinantal Quantum Monte Carlo (DQMC) and Numerical Linked Cluster Expansion (NLCE) algorithms and find good agreement. Calculations on the doped system are near the limits of these techniques, illustrating the value of cold atom quantum simulations for studying strongly-correlated materials.
The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. Using cold atomic gases, various condensed matter models can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the cuprates. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in the bulk include the observation of fermion pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported, but have not yet addressed superfluid behavior. Here we show that when a condensate of fermionic atom pairs was released from an optical lattice, distinct interference peaks appear, implying long range order, a property of a superfluid. Conceptually, this implies that strong s-wave pairing and superfluidity have now been established in a lattice potential, where the transport of atoms occurs by quantum mechanical tunneling and not by simple propagation. These observations were made for unitarity limited interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly due to a superfluid to insulator transition. Such strongly interacting fermions in an optical lattice can be used to study a new class of Hamiltonians with interband and atom-molecule couplings.
Observation of topological phases beyond two-dimension (2D) has been an open challenge for ultracold atoms. Here, we realize for the first time a 3D spin-orbit coupled nodal-line semimetal in an optical lattice and observe the bulk line nodes with ultracold fermions. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows to detect the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be generally applied to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate the first approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.
We demonstrate a probe for nearest-neighbor correlations of fermionic quantum gases in optical lattices. It gives access to spin and density configurations of adjacent sites and relies on creating additional doubly occupied sites by perturbative lattice modulation. The measured correlations for different lattice temperatures are in good agreement with an ab initio calculation without any fitting parameters. This probe opens new prospects for studying the approach to magnetically ordered phases.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.