Do you want to publish a course? Click here

ESR Probing of Quantum Critical Phenomena in Doped S=1/2 AF Quantum Spin Chain

69   0   0.0 ( 0 )
 Added by Sergey Demishev
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The results of high frequency (60-315 GHz) studies of the ESR in CuGeO3 single crystals containing 0.9% of the Mn impurity are reported. The quantitative ESR line shape analysis shows that the low temperature (T<40 K) magnetic susceptibility of Cu2+ chains diverges with the critical exponent a=0.81 and therefore indicates an onset of a quantum critical (QC) regime. The scenario, in which disorder caused by the Mn impurity in the quantum spin chains in CuGeO3 may lead to the co-existence of the QC regime and the spin-Peierls dimerisation, is discussed. For the quantitative description of the temperature dependences of the line width and g-factor a model assuming the crossover from the high temperature semiclassical Nagata and Tazuke limit to the low temperature quantum case described by Oshikawa and Affleck theory is suggested.



rate research

Read More

We present a model compound with a spin-1/2 spatially anisotropic frustrated square lattice, in which three antiferromagnetic interactions and one ferromagnetic interaction are competing. We observe an unconventional gradual increase in the low-temperature magnetization curve reminiscent of the quantum critical behavior between gapped and gapless phases. In addition, the specific heat and electron spin resonance signals indicate one-dimensional characteristics. These results demonstrate quantum critical behavior associated with one dimensionalization caused by frustrated interactions in the spin-1/2 spatially anisotropic square lattice.
83 - M. Jeong , H. M. R{o}nnow 2015
We demonstrate quantum critical scaling for an $S=1/2$ Heisenberg antiferromagnetic chain compound CuPzN in a magnetic field around saturation, by analysing previously reported magnetization [Y. Kono {it et al.}, Phys. Rev. Lett. {bf 114}, 037202 (2015)], thermal expansion [J. Rohrkamp {it et al.}, J. Phys.: Conf. Ser. {bf 200}, 012169 (2010)] and NMR relaxation data [H. Kuhne {it et al.}, Phys. Rev. B {bf 80}, 045110 (2009)]. The scaling of magnetization is demonstrated through collapsing the data for a range of both temperature and field onto a single curve without making any assumption for a theoretical form. The data collapse is subsequently shown to closely follow the theoretically-predicted scaling function without any adjustable parameters. Experimental boundaries for the quantum critical region could be drawn from the variable range beyond which the scaled data deviate from the theoretical function. Similarly to the magnetization, quantum critical scaling of the thermal expansion is also demonstrated. Further, the spin dynamics probed via NMR relaxation rate $1/T_1$ close to the saturation is shown to follow the theoretically-predicted quantum critical behavior as $1/T_1propto T^{-0.5}$ persisting up to temperatures as high as $k_mathrm{B}T simeq J$, where $J$ is the exchange coupling constant.
The ordered hexagonal perovskite Ba2CuTeO6 hosts weakly coupled S=1/2 spin ladders produced by an orbital ordering of Cu2+. The magnetic susceptibility chi(T) of Ba2CuTeO6 is well described by that expected for isolated spin ladders with exchange coupling of J~86 K but shows a deviation from the expected thermally activated behavior at low temperatures below T*~25 K. An anomaly in chi(T), indicative of magnetic ordering, is observed at T_mag=16 K. No clear signature of long-range ordering, however, is captured in NMR, specific heat or neutron diffraction measurements at and below T_mag. The marginal magnetic transition, indicative of strong quantum fluctuations, is evidence that Ba2CuTeO6 is in very close proximity to a quantum critical point between a magnetically ordered phase and a gapped spin liquid controlled by inter-ladder couplings.
We present a 13C-NMR study of the magnetic field driven transition to complete polarization of the S=1/2 antiferromagnetic Heisenberg chain system copper pyrazine dinitrate Cu(C_4H_4N_2)(NO_3)_2 (CuPzN). The static local magnetization as well as the low-frequency spin dynamics, probed via the nuclear spin-lattice relaxation rate 1/T_1, were explored from the low to the high field limit and at temperatures from the quantum regime (k_B T << J) up to the classical regime (k_B T >> J). The experimental data show very good agreement with quantum Monte Carlo calculations over the complete range of parameters investigated. Close to the critical field, as derived from static experiments, a pronounced maximum in 1/T_1 is found which we interpret as the finite-temperature manifestation of a diverging density of zero-energy magnetic excitations at the field-driven quantum critical point.
108 - P. Lecheminant , E. Orignac 2003
The stability of the magnetization $m=1/3$ plateau phase of the XXZ spin-1/2 Heisenberg chain with competing interactions is investigated upon switching on a staggered transverse magnetic field. Within a bosonization approach, it is shown that the low-energy properties of the model are described by an effective two-dimensional XY model in a three-fold symmetry-breaking field. A phase transition in the three-state Potts universality class is expected separating the $m=1/3$ plateau phase to a phase where the spins are polarized along the staggered magnetic field. The Z$_3$ critical properties of the transition are determined within the bosonization approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا