Do you want to publish a course? Click here

Z_3 Quantum Criticality in a spin-1/2 chain model

109   0   0.0 ( 0 )
 Added by Lecheminant
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

The stability of the magnetization $m=1/3$ plateau phase of the XXZ spin-1/2 Heisenberg chain with competing interactions is investigated upon switching on a staggered transverse magnetic field. Within a bosonization approach, it is shown that the low-energy properties of the model are described by an effective two-dimensional XY model in a three-fold symmetry-breaking field. A phase transition in the three-state Potts universality class is expected separating the $m=1/3$ plateau phase to a phase where the spins are polarized along the staggered magnetic field. The Z$_3$ critical properties of the transition are determined within the bosonization approach.



rate research

Read More

We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo$_2$V$_2$O$_8$ as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N{e}el temperature of $T_Nsim5$ K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity $v(B)$ and a clear minimum of temperature $T(B)$ at $B^{c,3D}_perp=21.4$ T, indicating the suppression of the antiferromagnetic order. At higher fields, the $T(B)$ curve shows a broad minimum at $B^c_perp = 40$ T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr{u}neisen parameter $Gamma_B propto (B-B^{c}_perp)^{-1}$. By contrast, around the critical field, the Gr{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
138 - M. Pregelj , A. Zorko , O. Zaharko 2015
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long-range interactions, e.g., between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat, and neutron diffraction measurements unveils $beta$-TeVO$_4$ as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Strikingly, a narrow spin stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions possibly assisted by the symmetry allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding other widespread, yet still elusive, stripe-related phenomena.
Here we study the emergence of different Symmetry-Protected Topological (SPT) phases in a spin-2 quantum chain. We consider a Heisenberg-like model with bilinear, biquadratic, bicubic, and biquartic nearest-neighbor interactions, as well as uniaxial anisotropy. We show that this model contains four different effective spin-1 SPT phases, corresponding to different representations of the $(mathbb{Z}_2 times mathbb{Z}_2) + T$ symmetry group, where $mathbb{Z}_2$ is some $pi$-rotation in the spin internal space and $T$ is time-reversal. One of these phases is equivalent to the usual spin-1 Haldane phase, while the other three are different but also typical of spin-1 systems. The model also exhibits an $SO(5)$-Haldane phase. Moreover, we also find that the transitions between the different effective spin-1 SPT phases are continuous, and can be described by a $c=2$ conformal field theory. At such transitions, indirect evidence suggests a possible effective field theory of four massless Majorana fermions. The results are obtained by approximating the ground state of the system in the thermodynamic limit using Matrix Product States via the infinite Time Evolving Block Decimation method, as well as by effective field theory considerations. Our findings show, for the first time, that different large effective spin-1 SPT phases separated by continuous quantum phase transitions can be stabilized in a simple quantum spin chain.
83 - M. Jeong , H. M. R{o}nnow 2015
We demonstrate quantum critical scaling for an $S=1/2$ Heisenberg antiferromagnetic chain compound CuPzN in a magnetic field around saturation, by analysing previously reported magnetization [Y. Kono {it et al.}, Phys. Rev. Lett. {bf 114}, 037202 (2015)], thermal expansion [J. Rohrkamp {it et al.}, J. Phys.: Conf. Ser. {bf 200}, 012169 (2010)] and NMR relaxation data [H. Kuhne {it et al.}, Phys. Rev. B {bf 80}, 045110 (2009)]. The scaling of magnetization is demonstrated through collapsing the data for a range of both temperature and field onto a single curve without making any assumption for a theoretical form. The data collapse is subsequently shown to closely follow the theoretically-predicted scaling function without any adjustable parameters. Experimental boundaries for the quantum critical region could be drawn from the variable range beyond which the scaled data deviate from the theoretical function. Similarly to the magnetization, quantum critical scaling of the thermal expansion is also demonstrated. Further, the spin dynamics probed via NMR relaxation rate $1/T_1$ close to the saturation is shown to follow the theoretically-predicted quantum critical behavior as $1/T_1propto T^{-0.5}$ persisting up to temperatures as high as $k_mathrm{B}T simeq J$, where $J$ is the exchange coupling constant.
The spin-nematic phase is an intriguing state of matter that lacks usual long-range dipolar order, yet it exhibits higher multipolar order. This makes its detection extremely difficult and controversial. Recently, nuclear magnetic resonance (NMR) has been proposed as one of the most suitable techniques to confirm its existence. We report a $^{17}$O NMR observation of the reduction of the local magnetization in the polarized state of the frustrated spin-1/2 chain $beta$-TeVO$_4$, which was previously proposed to be a fingerprint of the spin-nematic behavior. However, our detailed study shows that the detected missing fraction of the magnetization, probed by NMR frequency shift, is thermally activated, thus undermining the presence of the spin-nematic phase in the investigated compound. This highlights the importance of careful considerations of temperature-dependent NMR shift that has been overlooked in previous studies of spin nematicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا