Do you want to publish a course? Click here

Electronic structures of layered perovskite Sr2MO4 (M=Ru, Rh, and Ir)

92   0   0.0 ( 0 )
 Added by Soon Jae Moon
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the electronic structures of the two-dimensional layered perovskite Sr$_{2}$textit{M}O$_{4}$ (textit{M}=4textit{d} Ru, 4textit{d} Rh, and 5textit{d} Ir) using optical spectroscopy and polarization-dependent O 1textit{s} x-ray absorption spectroscopy. While the ground states of the series of compounds are rather different, their optical conductivity spectra $sigma(omega)$ exhibit similar interband transitions, indicative of the common electronic structures of the 4textit{d} and 5textit{d} layered oxides. The energy splittings between the two $e_{g}$ orbitals, $i.e.$, $d_{3z^{2}-r^{2}}$ and $d_{x^{2}-y^{2}}$, are about 2 eV, which is much larger than those in the pseudocubic and 3textit{d} layered perovskite oxides. The electronic properties of the Sr$_{2}$textit{M}O$_{4}$ compounds are discussed in terms of the crystal structure and the extended character of the 4textit{d} and 5textit{d} orbitals.

rate research

Read More

Layered van~der~Waals materials of the family TaTMTe$_4$ (TM=Ir, Rh, Ru) are showing very interesting electronic properties. Here we report the synthesis, crystal growth and structural characterization of TaIrTe$_4$, TaRhTe$_4$, TaIr$_{1-x}$Rh$_{x}$Te$_4$ ($x = 0.06$; 0.14; 0.78; 0.92) and Ta$_{1+x}$Ru$_{1-x}$Te$_4$ single crystals. For Ta$_{1+x}$Ru$_{1-x}$Te$_4$ off-stoichiometry is shown. X-ray powder diffraction confirms that TaRhTe4 is isostructural to TaIrTe4. We show that all these compounds are metallic with diamagnetic behavior. Ta$_{1.26(2)}$Ru$_{0.75(2)}$Te$_{4.000(8)}$ exhibits an upturn in the resistivity at low temperatures which is strongly field dependent. Below $T approx 4$K we observed signatures of the superconductivity in the TaIr$_{1-x}$Rh$_{x}$Te$_4$ compounds for $x = 0.92$. Magnetotransport measurements on all samples show weak magnetoresistance (MR) field dependence that is typically quadratic-in-field. However, for TaIr$_{1-x}$Rh$_{x}$Te$_4$ with $xapprox 0.78$, the MR has a linear term dominating in low fields that indicates the presence of Dirac cones in the vicinity of the Fermi energy. For TaRhTe$_4$ series the MR is almost isotropic. We have performed electronic structure calculations for isostructural TaIrTe$_4$ and TaRhTe$_4$ together with the projected total density of states. The main difference is appearance of the Rh-band close to the Fermi level.
119 - K. Yamaura 2004
The solid solution between the ferromagnetic metal SrRuO$_3$ and the enhanced paramagnetic metal SrRhO$_3$ was recently reported [K. Yamaura et al., Phys. Rev. B 69 (2004) 024410], and an unexpected feature was found in the specific heat data at $x$=0.9 of SrRu$_{1-x}$Rh$_x$O$_3$. The feature was reinvestigated further by characterizing additional samples with various Ru concentrations in the vicinity of $x$=0.9. Specific heat and magnetic susceptibility data indicate that the feature reflects a peculiar magnetism of the doped perovskite, which appears only in the very narrow composition range 0.85$<$$x$$le$0.95.
One way to induce insulator to metal transitions in the spin-orbit Mott insulator Sr2IrO4 is to substitute iridium with transition metals (Ru, Rh). However, this creates intriguing inhomogeneous metallic states, which cannot be described by a simple doping effect. We detail the electronic structure of the Ru-doped case with angle-resolved photoemission and show that, contrary to Rh, it cannot be connected to the undoped case by a rigid shift. We further identify bands below $E_F$ coexisting with the metallic ones that we assign to non-bonding Ir sites. We rationalize the differences between Rh and Ru by a different hybridization with oxygen, which mediates the coupling to Ir and sensitively affects the effective doping. We argue that the spin-orbit coupling does not control neither the charge transfer nor the transition threshold.
The intermediate valence compounds Yb2M3Ga9 (M = Rh, Ir) exhibit an anisotropic magnetic susceptibility. We report measurements of the temperature dependence of the 4f occupation number, nf(T), for Yb2M3Ga9 as well as the magnetic inelastic neutron scattering spectrum Smag at 12 and 300 K for Yb2Rh3Ga9. Both nf(T) and Smag were calculated for the Anderson impurity model with crystal field terms within an approach based on the non-crossing approximation. These results corroborate the importance of crystal field effects in these materials; they also suggest that Anderson lattice effects are important to the physics of Yb2M3Ga9.
95 - Y. S. Lee , J. S. Lee , T. W. Noh 2002
We investigated the electronic structures of the perovskite-type 4$d$ transition metal oxides Sr$M$O$_3$ ($M$ = Zr, Mo, Ru, and Rh) using their optical conductivity spectra $sigma (omega)$. The interband transitions in $sigma (omega)$ are assigned, and some important physical parameters, such as on-site Coulomb repulsion energy $U$, charge transfer energy $Delta_{pd}$, and crystal field splitting $10Dq$, are estimated. It is observed that $Delta _{pd}$ and 10$Dq$ decrease systematically with the increase in the atomic number of the 4$d$ transition metal. Compared to the case of 3$d$ transition metal oxides, the magnitudes of $Delta_{pd}$ and 10$Dq$ are larger, but those of $U$ are smaller. These behaviors can be explained by the more extended nature of the orbitals in the 4$d$ transition metal oxides.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا