No Arabic abstract
We investigated the electronic structures of the perovskite-type 4$d$ transition metal oxides Sr$M$O$_3$ ($M$ = Zr, Mo, Ru, and Rh) using their optical conductivity spectra $sigma (omega)$. The interband transitions in $sigma (omega)$ are assigned, and some important physical parameters, such as on-site Coulomb repulsion energy $U$, charge transfer energy $Delta_{pd}$, and crystal field splitting $10Dq$, are estimated. It is observed that $Delta _{pd}$ and 10$Dq$ decrease systematically with the increase in the atomic number of the 4$d$ transition metal. Compared to the case of 3$d$ transition metal oxides, the magnitudes of $Delta_{pd}$ and 10$Dq$ are larger, but those of $U$ are smaller. These behaviors can be explained by the more extended nature of the orbitals in the 4$d$ transition metal oxides.
We investigated the electronic structures of the two-dimensional layered perovskite Sr$_{2}$textit{M}O$_{4}$ (textit{M}=4textit{d} Ru, 4textit{d} Rh, and 5textit{d} Ir) using optical spectroscopy and polarization-dependent O 1textit{s} x-ray absorption spectroscopy. While the ground states of the series of compounds are rather different, their optical conductivity spectra $sigma(omega)$ exhibit similar interband transitions, indicative of the common electronic structures of the 4textit{d} and 5textit{d} layered oxides. The energy splittings between the two $e_{g}$ orbitals, $i.e.$, $d_{3z^{2}-r^{2}}$ and $d_{x^{2}-y^{2}}$, are about 2 eV, which is much larger than those in the pseudocubic and 3textit{d} layered perovskite oxides. The electronic properties of the Sr$_{2}$textit{M}O$_{4}$ compounds are discussed in terms of the crystal structure and the extended character of the 4textit{d} and 5textit{d} orbitals.
One way to induce insulator to metal transitions in the spin-orbit Mott insulator Sr2IrO4 is to substitute iridium with transition metals (Ru, Rh). However, this creates intriguing inhomogeneous metallic states, which cannot be described by a simple doping effect. We detail the electronic structure of the Ru-doped case with angle-resolved photoemission and show that, contrary to Rh, it cannot be connected to the undoped case by a rigid shift. We further identify bands below $E_F$ coexisting with the metallic ones that we assign to non-bonding Ir sites. We rationalize the differences between Rh and Ru by a different hybridization with oxygen, which mediates the coupling to Ir and sensitively affects the effective doping. We argue that the spin-orbit coupling does not control neither the charge transfer nor the transition threshold.
During the last decade, ab initio methods to calculate electronic structure of materials based on hybrid functionals are increasingly becoming widely popular. In this Letter, we show that, in the case of small gap transition metal oxides, such as VO2, with rather subtle physics in the vicinity of the Fermi-surface, such hybrid functional schemes without the inclusion of expensive fully self-consistent GW corrections fail to yield this physics and incorrectly describe the features of the wave function of states near the Fermi-surface. While a fully self-consistent GW on top of hybrid functional approach does correct these wave functions as expected, and is found to be in general agreement with the results of a fully self-consistent GW approach based on semilocal functionals, it is much more computationally demanding as compared to the latter approach for the benefit of essentially the same results.
We have performed systematic tight-binding (TB) analyses of the angle-resolved photoemission spectroscopy (ARPES) spectra of transition-metal (TM) oxides A$M$O$_3$ ($M=$ Ti, V, Mn, and Fe) with the perovskite-type structure and compared the obtained parameters with those obtained from configuration-interaction (CI) cluster-model analyses of photoemission spectra. The values of $epsilon_d-epsilon_p$ from ARPES are found to be similar to the charge-transfer energy $Delta$ from O $2p$ orbitals to empty TM 3d orbitals and much larger than $Delta-U/2$ ($U$: on-site Coulomb energy) expected for Mott-Hubbard-type compounds including SrVO$_3$. $epsilon_d-epsilon_p$ values from {it ab initio} band-structure calculations show similar behaviors to those from ARPES. The values of the $p-d$ transfer integrals to describe the global electronic structure are found to be similar in all the estimates, whereas additional narrowing beyond the TB description occurs in the ARPES spectra of the $d$ band.
The quasiparticle band structures of nonmagnetic monoxides, MO (M=Mg, Ca, Ti, and V), are calculated by the GW approximation. The band gap and the width of occupied oxygen 2p states in insulating MgO and CaO agree with experimental observation. In metallic TiO and VO, conduction bands originated from metal 3d states become narrower. Then the partial densities of transition metal e_g and t_2g states show an enhanced dip between the two. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the Hartree-Fock approximation and the static Coulomb hole plus screened exchange approximation. The d-d Coulomb interaction is shown to be very much reduced by on-site and off-site d-electron screening in TiO and VO. The dielectric function and the energy loss spectrum are also presented and discussed in detail.