No Arabic abstract
The dynamic response of ultracold Bose gases in one-dimensional optical lattices and superlattices is investigated based on exact numerical time evolutions in the framework of the Bose-Hubbard model. The system is excited by a temporal amplitude modulation of the lattice potential, as it was done in recent experiments. For regular lattice potentials, the dynamic signatures of the superfluid to Mott-insulator transition are studied and the position and the fine-structure of the resonances is explained by a linear response analysis. Using direct simulations and the perturbative analysis it is shown that in the presence of a two-colour superlattice the excitation spectrum changes significantly when going from the homogeneous Mott-insulator the quasi Bose-glass phase. A characteristic and experimentally accessible signature for the quasi Bose-glass is the appearance of low-lying resonances and a suppression of the dominant resonance of the Mott-insulator phase.
The zero temperature phase diagram of binary boson-fermion mixtures in two-colour superlattices is investigated. The eigenvalue problem associated with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical diagonalization technique, supplemented by an adaptive basis truncation scheme. The physically motivated basis truncation allows to access larger systems in a fully controlled and very flexible framework. Several experimentally relevant observables, such as the matter-wave interference pattern and the condensatefraction, are investigated in order to explore the rich phase diagram. At symmetric half filling a phase similar to the Mott-insulating phase in a commensurate purely bosonic system is identified and an analogy to recent experiments is pointed out. Furthermore a phase of complete localization of the bosonic species generated by the repulsive boson-fermion interaction is identified. These localized condensates are of a different nature than the genuine Bose-Einstein condensates in optical lattices.
We study various properties of an ultracold two-dimensional (2D) Bose gas that are beyond a mean-field description. We first derive the effective interaction for such a system as realized in current experiments, which requires the use of an energy dependent $T$-matrix. Using this result, we then solve the mean-field equation of state of the modified Popov theory, and compare it with the usual Hartree-Fock theory. We show that even though the former theory does not suffer from infrared divergences in both the normal and superfluid phases, there is an unphysical density discontinuity close to the Berezinskii-Kosterlitz-Thouless transition. We then improve upon the mean-field description by using a renormalization group approach and show how the density discontinuity is resolved. The flow equations in two dimensions, in particular, of the symmetry-broken phase, already contain some unique features pertinent to the 2D XY model, even though vortices have not been included explicitly. We also compute various many-body correlators, and show that correlation effects beyond the Hartree-Fock theory are important already in the normal phase as criticality is approached. We finally extend our results to the inhomogeneous case of a trapped Bose gas using the local-density approximation and show that close to criticality, the renormalization group approach is required for the accurate determination of the density profile.
It has been suggested that either diamagnetism or paramagnetism of Bose gases, due to the charge or spin degrees of freedom respectively, appears solely to be extraordinarily strong. We investigate magnetic properties of charged spin-1 Bose gases in external magnetic field, focusing on the competition between the diamagnetism and paramagnetism, using the Lande-factor $g$ of particles to evaluate the strength of paramagnetic effect. We propose that a gas with $g<{1/sqrt{8}}$ exhibits diamagnetism at all temperatures, while a gas with $g>{1/2}$ always exhibits paramagnetism. Moreover, a gas with the Lande-factor in between shows a shift from paramagnetism to diamagnetism as the temperature decreases. The paramagnetic and diamagnetic contributions to the total magnetization density are also calculated in order to demonstrate some details of the competition.
We solve the Gross-Pitaevskii equation to study energy transfer from an oscillating `object to a trapped Bose-Einstein condensate. Two regimes are found: for object velocities below a critical value, energy is transferred by excitation of phonons at the motion extrema; while above the critical velocity, energy transfer is via vortex formation. The second regime corresponds to significantly enhanced heating, in agreement with a recent experiment.
In the study of relaxation processes in coherent non-equilibrium dynamics of quenched quantum systems, ultracold atoms in optical superlattices with periodicity two provide a very fruitful test ground. In this work, we consider the dynamics of a particular, experimentally accessible initial state prepared in a superlattice structure evolving under a Bose-Hubbard Hamiltonian in the entire range of interaction strengths, further investigating the issues raised in Ref. [Phys. Rev. Lett. 101, 063001 (2008)]. We investigate the relaxation dynamics analytically in the non interacting and hard core bosonic limits, deriving explicit expressions for the dynamics of certain correlation functions, and numerically for finite interaction strengths using the time-dependent density-matrix renormalization (t-DMRG) approach. We can identify signatures of local relaxation that can be accessed experimentally with present technology. While the global system preserves the information about the initial condition, locally the system relaxes to the state having maximum entropy respecting the constraints of the initial condition. For finite interaction strengths and finite times, the relaxation dynamics contains signatures of the relaxation dynamics of both the non-interacting and hard core bosonic limits.