No Arabic abstract
Here we show that the low temperature phase of magnetite is associated with an effective, although fractional, ordering of the charge. Evidence and a quantitative evaluation of the atomic charges are achieved by using resonant x-ray diffraction (RXD) experiments whose results are further analyzed with the help of ab initio calculations of the scattering factors involved. By confirming the results obtained from X-ray crystallography we have shown that RXD is able to probe quantitatively the electronic structure in very complex oxides, whose importance covers a wide domain of applications.
Resonant x-ray diffraction performed at the $rm L_{II}$ and $rm L_{III}$ absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca$_2$RuO$_4$ single crystals. A large resonant enhancement due to electric dipole $2pto 4d$ transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at $rm T_{N}=110$ K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru $t_{2g}$ electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca$_2$RuO$_4$.
We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a dead surface layer is present that is only absorbing photons but does not contribute to the scattering signal.
Comprehensive x-ray scattering studies, including resonant scattering at Mn L-edge, Tb L- and M-edges, were performed on single crystals of TbMn2O5. X-ray intensities were observed at a forbidden Bragg position in the ferroelectric phases, in addition to the lattice and the magnetic modulation peaks. Temperature dependences of their intensities and the relation between the modulation wave vectors provide direct evidences of exchange striction induced ferroelectricity. Resonant x-ray scattering results demonstrate the presence of multiple magnetic orders by exhibiting their different temperature dependences. The commensurate-to-incommensurate phase transition around 24 K is attributed to discommensuration through phase slipping of the magnetic orders in spin frustrated geometries. We proposed that the low temperature incommensurate phase consists of the commensurate magnetic domains separated by anti-phase domain walls which reduce spontaneous polarizations abruptly at the transition.
We have performed a resonant x-ray scattering (RXS) study near the Co K edge on a single crystal of Ca3Co2O6. In the magnetically ordered phase a new class of weak reflections appears at the magnetic propagation vector tau (1/3,1/3,1/3). These new reflections allow direct access to the dipolar-quadrupolar E1E2 scattering channel. The theoretical possibility of observing isolated E1E2 electromagnetic multipoles has attracted a lot of interest in the recent years. Unfortunately in many system of interest, parity even and parity odd tensor contributions occur at the same positions in reciprocal space. We demonstrate that in Ca3Co2O6 it is possible to completely separate the parity even from the parity odd terms. The possibility of observing such terms even in globally centrosymmetric systems using RXS has been investigated theoretically; Ca3Co2O6 allows a symmetry based separation of this contribution.
Magnetite, Fe$_3$O$_4$, displays a highly complex low temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have re-examined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2)$_c$ reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered, but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering.