We report measurements of the quantum Hall state energy gap at avoided crossings between Landau levels originating from different conduction band valleys in AlAs quantum wells. These gaps exhibit an approximately linear dependence on magnetic field over a wide range of fields and filling factors. More remarkably, we observe an unexpected dependence of the gap size on the relative spin orientation of the crossing levels, with parallel-spin crossings exhibiting larger gaps than antiparallel-spin crossings.
Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap {Delta} for the quantum Hall (QH) state at filling factor { u}={pm}4 and -2. The single-particle gap for { u}=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken { u}=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the { u}=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials.
We have studied the Ho3+ spin dynamics for LiY0.998Ho0.002F4 through the positive muon (mu+) transverse field depolarization rate lambda_TF as a function of temperature and magnetic field. We find sharp reductions in lambda_TF(H) at fields of 23, 46 and 69 mT, for which the Ho3+ ion system has field-induced (avoided) level crossings. The reduction scales with calculated level repulsions, suggesting that mu+ depolarization by slow fluctuations of non-resonant Ho3+ spin states is partially suppressed when resonant tunneling opens new fluctuation channels at frequencies much greater than the muon precession frequency.
There is increasing experimental evidence for fractional quantum Hall effect at filling factor $ u=2+3/8$. Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a number of methods. In our variational study, we consider the Fermi sea, the Pfaffian paired state, and bubble and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of transverse thickness. However, when we incorporate interactions between composite fermions through composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect at $ u=2+3/8$. The resulting state is seen to be distinct from the Pfaffian wave function.
We identify an unusual mechanism for quantum oscillations in nodal semimetals, driven by a single pair of Landau levels periodically closing their gap at the Fermi energy as a magnetic field is varied. These `zero Landau level quantum oscillations (ZQOs) appear in the nodal limit where the zero-field Fermi volume vanishes, and have distinctive periodicity and temperature dependence. We link the Landau spectrum of a two-dimensional (2D) nodal semimetal to the Rabi model, and show by exact solution that across the entire Landau fan, pairs of opposite-parity Landau levels are intertwined in a `serpentine manner. We propose 2D surfaces of topological crystalline insulators as natural settings for ZQOs, and comment on implications for anomaly physics in 3D nodal semimetals.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.