Do you want to publish a course? Click here

Elastic Light Scattering by Semiconductor Quantum Dots

239   0   0.0 ( 0 )
 Added by Stanislav Pavlov
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Elastic light scattering by low-dimensional semiconductor objects is investigated theoretically. The differential cross section of resonant light scattering on excitons in quantum dots is calculated. The polarization and angular distribution of scattered light do not depend on the quantum-dot form, sizes and potential configuration if light wave lengths exceed considerably the quantum-dot size. In this case the magnitude of the total light scattering cross section does not depend on quantum-dot sizes. The resonant total light scattering cross section is about a square of light wave length if the exciton radiative broadening exceeds the nonradiative broadening. Radiative broadenings are calculated.

rate research

Read More

The theory of elastic light scattering by semiconductor quantum dots is suggested. The semiclassical method, applying retarded potentials to avoid the problem of bounder conditions for electric and magnetic field, is used. The exact results for the Pointing vector on large distances from a quantum dot, formulas of differential cross sections of light scattering for the monochromatic and pulse irradiation are obtained.
The cross section of light absorption by semiconductor quantum dots in the case of the resonance with excitons $Gamma_6 times Gamma_7$ in cubical crystals $T_d$ is calculated. It is shown that an interference of stimulating and induced electric and magnetic fields must be taken into account. The absorption section is proportional to the exciton nonradiative damping $gamma$.
290 - Yanwen Wu , I.M. Piper , M. Ediger 2010
Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.
Pyramidal quantum dots (QDs) grown in inverted recesses have demonstrated over the years an extraordinary uniformity, high spectral purity and strong design versatility. We discuss recent results, also in view of the Stranski-Krastanow competition and give evidence for strong perspectives in quantum information applications for this system. We examine the possibility of generating entangled and indistinguishable photons, together with the need for the implementation of a, regrettably still missing, strategy for electrical control.
111 - Y. H. Huo , B. J. Witek , S. Kumar 2012
Quantum dots (QDs) can act as convenient hosts of two-level quantum szstems, such as single electron spins, hole spins or excitons (bound electron-hole pairs). Due to quantum confinement, the ground state of a single hole confined in a QD usually has dominant heavy-hole (HH) character. For this reason light-hole (LH) states have been largely neglected, despite the fact that may enable the realilzation of coherent photon-to-spin converters or allow for faster spin manipulation compared to HH states. In this work, we use tensile strains larger than 0.3% to switch the ground state of excitons confined in high quality GaAs/AlGaAs QDs from the conventional HH- to LH-type. The LH-exciton fine structure is characterized by two in-plane-polarized lines and, ~400 micro-eV above them, by an additional line with pronounced out-of-plane oscillator strength, consistent with theoretical predictions based on atomistic empirical pseudopotential calculations and a simple mesoscopic model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا