No Arabic abstract
Matter-wave interferometers reveal some of the most fascinating phenomena of the quantum world. Phase shifts due to rotation (the Sagnac effect) for neutrons, free atoms and superfluid 3He reveal the connection of matter waves to a non-rotating inertial frame. In addition, phase shifts in electron waves due to magnetic vector potentials (the Aharonov-Bohm effect) show that physical states can be modified in the absence of classical forces. We report here the observation of interference induced by the Earths rotation in superfluid 4He at 2 K, a temperature 2000 times higher than previously achieved with 3He. This interferometer, an analog of a dc-SQUID, employs a recently reported phenomenon wherein superfluid 4He exhibits quantum oscillations in an array of sub-micron apertures. We find that the interference pattern persists not only when the aperture array current-phase relation is a sinusoidal function characteristic of the Josephson effect, but also at lower temperatures where it is linear and oscillations occur by phase slips. The modest requirements for the interferometer (2 K cryogenics and fabrication of apertures at the level of 100nm) and its potential resolution suggest that, when engineering challenges such as vibration isolation are met, superfluid 4He interferometers could become important scientific probes.
Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will exhibit oscillatory motion when pushed through a small constriction. Here we report the observation of these oscillations between two reservoirs of superfluid 4He partitioned by an array of nanometer-sized apertures. They obey the Josephson frequency equation and are coherent amongst all the apertures. This discovery at the relatively high temperature of 2K (2000 times higher than related phenomena in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision.
We find that a temperature differential can drive superfluid oscillations in 4He. The oscillations are excited by a heater which causes a time dependent temperature differential across an array of 70nm apertures. By measuring the oscillation frequency and simultaneously determining both temperature and pressure differentials we prove the validity of the most general form of the Josephson frequency relation. These observations were made near saturated vapor pressure, within a few mK of the superfluid transition temperature.
The rich dynamics of flow between two weakly coupled macroscopic quantum reservoirs has led to a range of important technologies. Practical development has so far been limited to superconducting systems, for which the basic building block is the so-called superconducting Josephson weak link. With the recent observation of quantum oscillations in superfluid 4He near 2K, we can now envision analogous practical superfluid helium devices. The characteristic function which determines the dynamics of such systems is the current-phase relation Is(phi), which gives the relationship between the superfluid current Is flowing through a weak link and the quantum phase difference phi across it. Here we report the measurement of the current-phase relation of a superfluid 4He weak link formed by an array of nano-apertures separating two reservoirs of superfluid 4He. As we vary the coupling strength between the two reservoirs, we observe a transition from a strongly coupled regime in which Is(phi) is linear and flow is limited by 2pi phase slips, to a weak coupling regime where Is(phi) becomes the sinusoidal signature of a Josephson weak link.
The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a Dynamic Many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.
We investigate the operation of WSi superconducting nanowire single-photon detectors (SNSPDs) at 2.5 K, a temperature which is ~ 70 % of the superconducting transition temperature (TC) of 3.4 K. We demonstrate saturation of the system detection efficiency at 78 +- 2 % with a jitter of 191 ps. We find that the jitter at 2.5 K is limited by the noise of the readout, and can be improved through the use of cryogenic amplifiers. Operation of SNSPDs with high efficiency at temperatures very close to TC appears to be a unique property of amorphous WSi.