Do you want to publish a course? Click here

Spectral density of the Hubbard-model by the continued fraction method

56   0   0.0 ( 0 )
 Added by Roland Hayn
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the continued fraction method (CFM) as a new microscopic approximation to the spectral density of the Hubbard model in the correlated metal phase away from half filling. The quantity expanded as a continued fraction is the single particle Green function. Leading spectral moments are taken into account through a set of real expansion coefficients, as known from the projection technique. The new aspect is to add further stages to the continued fraction, with complex coefficients, thus defining a terminator function. This enables us to treat the entire spectral range of the Green function on equal footing and determine the energy scale of the Fermi liquid quasiparticles by minimizing the total energy. The solution is free of phenomenological parameters and remains well defined in the strong coupling limit, near the doping controlled metal-insulator transition. Our results for the density of states agree reasonably with several variants of the dynamical mean field theory. The CFM requires minimal numerical effort and can be generalized in several ways that are interesting for applications to real materials.



rate research

Read More

Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with increasing the repulsive Hubbard interaction U at Uc1 = 7.55 t and Uc2 = 9.65 t (t being the hopping integral), indicating that there are three phases separated by first order transitions. The absence of any singularity in physical quantities for 0 < U < Uc1 implies that this phase corresponds to a metallic phase. The local spin density induced by an applied pinning magnetic field for U > Uc2 exhibits a three sublattice feature, which is compatible with the Neel ordered state realized in the strong coupling limit. For Uc1 < U < Uc2, a response to the applied pinning magnetic field is comparable to that in the metallic phase but a relatively large spin correlation length is found with neither valence bond nor chiral magnetic order, suggesting a paramagnetic nature which resembles gapless spin liquid. The calculation also finds that the pair- ing correlation function monotonically decreases with increasing U and thus the superconductivity is unlikely in the intermediate phase.
The second-order reduced density matrix method (the RDM method) has performed well in determining energies and properties of atomic and molecular systems, achieving coupled-cluster singles and doubles with perturbative triples (CC SD(T)) accuracy without using the wave-function. One question that arises is how well does the RDM method perform with the same conditions that result in CCSD(T) accuracy in the strong correlation limit. The simplest and a theoretically important model for strongly correlated electronic systems is the Hubbard model. In this paper, we establish the utility of the RDM method when employing the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions in the two-dimension al Hubbard model case and we conduct a thorough study applying the $4times 4$ Hubbard model employing a coefficients. Within the Hubbard Hamilt onian we found that even in the intermediate setting, where $U/t$ is between 4 and 10, the $P$, $Q$, $G$, $T1$ and $T2^prime$ conditions re produced good ground state energies.
We calculate the spectral weight of the one- and two-dimensional Hubbard models, by performing exact diagonalizations of finite clusters and treating inter-cluster hopping with perturbation theory. Even with relatively modest clusters (e.g. 12 sites), the spectra thus obtained give an accurate description of the exact results. Thus, spin-charge separation (i.e. an extended spectral weight bounded by singularities) is clearly recognized in the one-dimensional Hubbard model, and so is extended spectral weight in the two-dimensional Hubbard model.
We derive a general procedure for evaluating the ${rm n}$th derivative of a time-dependent operator in the Heisenberg representation and employ this approach to calculate the zeroth to third spectral moment sum rules of the retarded electronic Greens function and self-energy for a system described by the Holstein-Hubbard model allowing for arbitrary spatial and time variation of all parameters (including spatially homogeneous electric fields and parameter quenches). For a translationally invariant (but time-dependent) Hamiltonian, we also provide sum rules in momentum space. The sum rules can be applied to various different phenomena like time-resolved angle-resolved photoemission spectroscopy and benchmarking the accuracy of numerical many-body calculations. This work also corrects some errors found in earlier work on simpler models.
The solution of complex many-body lattice models can often be found by defining an energy functional of the relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation is enough to describe the system total energy. Similarly to standard density functional theory, however, the exact functional is unknown and suitable approximations need to be formulated. By using a deep-learning neural network trained on exact-diagonalization results we demonstrate that one can construct an exact functional for the Hubbard model. In particular, we show that the neural network returns a ground-state energy numerically indistinguishable from that obtained by exact diagonalization and, most importantly, that the functional satisfies the two Hohenberg-Kohn theorems: for a given ground-state density it yields the external potential and it is fully variational in the site occupation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا