Do you want to publish a course? Click here

Direct Observation of Spectroscopic Inhomogeneities on La0.7Sr0.3MnO3 Thin Films by Scanning Tunnelling Spectroscopy

72   0   0.0 ( 0 )
 Added by Roberto Di Capua
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scanning tunnelling spectroscopy measurements were performed on La0.7Sr0.3MnO3 thin films both at room temperature and liquid nitrogen temperature. While no inhomogeneities were recorded at liquid nitrogen temperature on any sample, a clear evidence of spectroscopic inhomogeneities was evident in tunnelling conductance maps collected at room temperature. The investigated films exhibit a transition from a ferromagnetic-metallic to a paramagnetic-insulating state around room temperature, so that the observed spectroscopic features can be interpreted within a phase separation scenario. A quantitative analysis of the observed spectroscopic features is reported pointing out the occurrence of phase modulation and its possible correlation with the properties of the system.



rate research

Read More

64 - T. Becker , C. Streng , Y. Luo 2002
Thin films of La0.7Sr0.3MnO3 on MgO show a metal insulator transition and colossal magnetoresistance. The shape of this transition can be explained by intrinsic spatial inhomogeneities, which give rise to a domain structure of conducting and insulating domains at the submicrometer scale. These domains then undergo a percolation transition. The tunneling conductance and tunneling gap measured by scanning tunneling spectroscopy were used to distinguish and visualize these domains.
Nanoscale 3D surface modifications, by scanning tunneling microscopy under ambient conditions, of La0.7Sr0.3MnO3 thin films have been performed. It was demonstrated that there are well defined combinations of bias voltages and scan speeds which allow for controlled surface structuring. Lateral structures with sizes down to 1.5 nm are possible to obtain. Moreover, it is possible to reproducibly control the depth of etching with half a unit cell precision, enabling design of 3D surface structures and control of the surface termination of La0.7Sr0.3MnO3 through etching.
173 - T. K. Nath 2008
Magneto optic measurements are a very powerful tool for investigating the polarization of a conduction band as a function of temperature and are used here to study the polarization of the mobile electrons in 50nm LSMO (x=0.3) strained thin films grown epitaxially on single crystalline (001) LaAlO3 (LAO) and (001) lattice matched substrate (LSAT). The magnetic circular dichroism (MCD) has been investigated in magnetic fields up to 0.5 T and over a temperature range (10 to 450 K). The MCD spectra of both the films show a peak at the band gap at around 3 eV and the peak is found to be shifted towards lower energy side with the increase of temperature. A separate polaron peak (well known in insulating samples) appears at lower energy (about 1.8 eV) with the increase of temperature in all these metallic films. The rapid decrease in conduction band polarization in the film on LAO has strong implications for the use of these manganites in room temperature spintronics.
We have investigated the influence of point defect disorder in the electronic properties of manganite films. Real-time mapping of ion irradiated samples conductivity was performed though conductive atomic force microscopy (CAFM). CAFM images show electronic inhomogeneities in the samples with different physical properties due to spatial fluctuations in the point defect distribution. As disorder increases, the distance between conducting regions increases and the metal-insulator transition shifts to lower temperatures. Transport properties in these systems can be interpreted in terms of a percolative model. The samples saturation magnetization decreases as the irradiation dose increases whereas the Curie temperature remains unchanged.
Unique superconductivity at surfaces/interfaces, as exemplified by LaAlO3/SrTiO3 interfaces, and the high transition temperature in ultrathin FeSe films, have triggered intense debates on how superconductivity is affected in atomic and electronic reconstructions. The surface of superconducting cubic spinel oxide LiTi2O4 is another interesting system because its inherent surface electronic and atomic reconstructions add complexity to superconducting properties. Investigations of such surfaces are hampered by the lack of single crystals or high-quality thin films. Here, using low-temperature scanning tunneling microscopy, we report an unexpected small superconducting energy gap and a long coherence length on the surface of LiTi2O4 (111) epitaxial thin films. Furthermore, we find that a pseudogap opening at the Fermi energy modifies the surface superconductivity. Our results open an avenue, exploring anomalous superconductivity on the surface of cubic transition-metal oxides where the electronic states are spontaneously modulated with involving rich many-body interactions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا