Do you want to publish a course? Click here

Weakly Coupled Motion of Individual Layers in Ferromagnetic Resonance

113   0   0.0 ( 0 )
 Added by Dar\\'io Arena
 Publication date 2006
  fields Physics
and research's language is English
 Authors D. A. Arena




Ask ChatGPT about the research

We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.



rate research

Read More

Magnetic bilayers with different magnetic anisotropy directions are interesting for spintronic appli- cations as they offer the possibility to engineer tilted remnant magnetization states. We investigate the ferromagnetic resonance (FMR) linewidth of modes associated with two interlayer exchange- coupled ferromagnetic layers, the first a CoNi multilayer with a perpendicular magnetic anisotropy, and the second a CoFeB layer with an easy-plane anisotropy. For antiferromagnetic interlayer ex- change coupling, elevated FMR linewidths are observed below a characteristic field. This is in contrast to what is found in uncoupled, ferromagnetically coupled and single ferromagnetic layers in which the FMR linewidth increases monotonically with field. We show that the characteristic field at which there is a dramatic increase in FMR linewidth can be understood using a macrospin model with Heisenberg-type exchange coupling between the layers.
Permalloy films with one-dimensional (1D) profile modulation of submicron periodicity are fabricated based on commercially available DVD-R discs and studied using ferromagnetic resonance (FMR) method and micromagnetic numerical simulations. The main resonance position shows in-plane angular dependence which is strongly reminiscent of that in ferromagnetic films with uniaxial magnetic anisotropy. The main signal and additional low field lines are attributed to multiple standing spin wave resonances defined by the grating period. The results may present interest in magnetic metamaterials and magnonics applications.
Surface acoustic waves (SAW) in the GHz frequency range are exploited for the all-elastic excitation and detection of ferromagnetic resonance (FMR) in a ferromagnetic/ferroelectric (nickel/lithium niobate) hybrid device. We measure the SAW magneto-transmission at room temperature as a function of frequency, external magnetic field magnitude, and orientation. Our data are well described by a modified Landau-Lifshitz-Gilbert approach, in which a virtual, strain-induced tickle field drives the magnetization precession. This causes a distinct magnetic field orientation dependence of elastically driven FMR that we observe in both model and experiment.
138 - J. Balogh , M. Csontos , D. Kaptas 2002
Giant magnetoresistance (GMR) of sequentially evaporated Fe-Ag structures have been investigated. Direct experimental evidence is given that inserting ferromagnetic layers into a granular structure significantly enhances the magnetoresistance. The increase of the GMR effect is attributed to spin polarization effects. The large enhancement (up to more than a fourfold value) and the linear variation of the GMR in low magnetic fields are explained by scattering of the spin polarized conduction electrons on paramagnetic grains.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multiferroics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا