Do you want to publish a course? Click here

Ferromagnetic resonance linewidth in coupled layers with easy-plane and perpendicular magnetic anisotropies

329   0   0.0 ( 0 )
 Added by Jun-Wen Xu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic bilayers with different magnetic anisotropy directions are interesting for spintronic appli- cations as they offer the possibility to engineer tilted remnant magnetization states. We investigate the ferromagnetic resonance (FMR) linewidth of modes associated with two interlayer exchange- coupled ferromagnetic layers, the first a CoNi multilayer with a perpendicular magnetic anisotropy, and the second a CoFeB layer with an easy-plane anisotropy. For antiferromagnetic interlayer ex- change coupling, elevated FMR linewidths are observed below a characteristic field. This is in contrast to what is found in uncoupled, ferromagnetically coupled and single ferromagnetic layers in which the FMR linewidth increases monotonically with field. We show that the characteristic field at which there is a dramatic increase in FMR linewidth can be understood using a macrospin model with Heisenberg-type exchange coupling between the layers.

rate research

Read More

Within the framework of a two-band tight-binding model, we have performed calculations of giant magnetoresistance, exchange coupling and thermoelectric power (TEP) for a system consisting of three magnetic layers separated by two non-magnetic spacers with the first two magnetic layers strongly antiferromagnetically exchange-coupled. We have shown how does the GMR relate with the corresponding regions of magnetic structure phase diagrams and computed some relevant hysteresis loops, too. The GMR may take negative values for specific layers thicknesses, and the TEP reveals quite pronounced oscillations around a negative bias.
112 - D. A. Arena 2006
We demonstrate a layer- and time-resolved measurement of ferromagnetic resonance (FMR) in a Ni81Fe19 / Cu / Co93Zr7 trilayer structure. Time-resolved x-ray magnetic circular dichroism has been developed in transmission, with resonant field excitation at a FMR frequency of 2.3 GHz. Small-angle (to 0.2 degree), time-domain magnetization precession could be observed directly, and resolved to individual layers through elemental contrast at Ni, Fe, and Co edges. The phase sensitivity allowed direct measurement of relative phase lags in the precession oscillations of individual elements and layers. A weak ferromagnetic coupling, difficult to ascertain in conventional FMR measurements, is revealed in the phase and amplitude response of individual layers across resonance.
We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain nanoparticles. Magnetic anisotropy generates low-frequency satellite peaks in the microwave absorption spectrum and a blueshift of the ferromagnetic resonance (FMR) frequency. The low-frequency resonances are very sharp with maxima exceeding that of the FMR, because their magnetic and mechanical precessions are locked, thereby suppressing Gilbert damping. Magnetic nanoparticles can operate as nearly ideal motors that convert electromagnetic into mechanical energy. The Barnett/Einstein-de Haas effect is significant even in the absence of a net rotation.
The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C.
111 - Jun-Wen Xu , Andrew D. Kent 2020
Spin orbit torques are of great interest for switching the magnetization direction in nanostructures, moving skyrmions and exciting spin waves. The standard method of determining their efficiency is by spin torque ferromagnetic resonance (ST-FMR), a technique that involves analyzing the resonance linewidth or lineshape. On microstuctures these two analysis methods are quite consistent. Here we present ST-FMR results on permalloy (Ni$_{80}$Fe$_{20}$) nanowires -- with widths varying from $150$ to 800 nm -- that show that the standard model used to analyze the resonance linewidth and lineshape give different results; the efficiency appears greatly enhanced in nanowires when the lineshape method is used. A ST-FMR model that properly accounts for the sample shape is presented and shows much better consistency between the two methods. Micromagnetic simulations are used to verify the model. These results and the more accurate nanowire model presented are of importance for characterizing and optimizing charge-to-spin conversion efficiencies in nanostructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا