Do you want to publish a course? Click here

Universal scaling in the dynamical conductivity of heavy fermion Ce and Yb compounds

191   0   0.0 ( 0 )
 Added by Hidekazu Okamura
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamical conductivity spectra s(w) have been measured for a diverse range of heavy-fermion (HF) Ce and Yb compounds. A characteristic excitation peak has been observed in the mid-infrared region of s(w) for all the compounds, and has been analyzed in terms of a simple model based on conduction (c)-f electron hybridized band. A universal scaling is found between the observed peak energies and the estimated c-f hybridization strengths of these HF compounds. This scaling demonstrates that the model of c-f hybridized band can generally and quantitatively describe the charge excitation spectra of a wide range of HF compounds.



rate research

Read More

The electronic properties of Cerium (Ce) and ytterbium (Yb) intermetallic compounds may display a more local or more itinerant character depending on the interplay of the exchange interactions among the $4f$ electrons and the Kondo coupling between $4f$ and conduction electrons. For the more itinerant case, the materials form heavy-fermions once the Kondo effect is developed at low temperatures. Hence, a temperature variation occurs in the electronic structure that can be traced by investigating the optical conductivity ($sigma(omega)$) spectra. Remarkably, the temperature variation in the $sigma(omega)$ spectrum is still present in the more localized case, even though the Kondo effect is strongly suppressed. Here, we clarify the local and itinerant character in the electronic structure by investigating the temperature dependence in the $sigma(omega)$ spectra of various Ce and Yb compounds with a tetragonal ThCr$_2$Si$_2$-type crystal structure. We explain the temperature change in a unified manner. Above temperatures of about 100 K, the temperature dependence of the $sigma(omega)$ spectra is mainly due to the electron-phonon interaction, while the temperature dependence below is due to the Kondo effect.
In an effort to explore the differences between rare-earth-based and uranium-based heavy Fermion (HF) compounds that reflect the underlying difference between local 4$f$ moments and itinerant 5$f$ moments we analyze scaling laws that relate the low temperature neutron spectra of the primary (Kondo-esque) spin fluctuation to the specific heat and susceptibility. While the scaling appears to work very well for the rare earth intermediate valence compounds, for a number of key uranium compounds the scaling laws fail badly. There are two main reasons for this failure. First, the presence of antiferromagnetic (AF) fluctuations, which contribute significantly to the specific heat, alters the scaling ratios. Second, the scaling laws require knowledge of the high temperature moment degeneracy, which is often undetermined for itinerant 5$f$ electrons. By making plausible corrections for both effects, better scaling ratios are obtained for some uranium compounds. We point out that while both the uranium HF compounds and the rare earth intermediate valence (IV) compounds have spin fluctuation characteristic energies of order 5 - 25 meV, they differ in that the AF fluctuations that are usually seen in the U compounds are never seen in the rare earth IV compounds. This suggests that the 5f itineracy increases the f-f exchange relative to the rare earth case.
We report on single crystal growth and crystallographic parameters results of Ce$_2$PdIn$_8$, Ce$_3$PdIn$_{11}$, Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$. The Pt-systems Ce$_2$PtIn$_8$ and Ce$_3$PtIn$_{11}$ are synthesized for the first time. All these compounds are member of the Ce$_n$T$_m$In$_{3n+2m}$ (n = 1, 2,..; m = 1, 2,.. and T = transition metal) to which the extensively studied heavy fermion superconductor CeCoIn$_5$ belongs. Single crystals have been grown by In self-flux method. Differential scanning calorimetry studies were used to derive optimal growth conditions. Evidently, the maximum growth conditions for these materials should not exceed 750 $^{circ}$C. Single crystal x-ray data show that Ce$_2$TIn$_8$ compounds crystallize in the tetragonal Ho$_2$CoGa$_8$ phase (space group P4/mmm) with lattice parameters a =4.6898(3) $AA$ and c =12.1490(8) $AA$ for the Pt-based one (Pd: a = 4.6881(4) $AA$ and c = 12.2031(8) AA). The Ce$_3$TIn$_{11}$ compounds adopt the Ce$_3$PdIn$_{11}$ structure with a = 4.6874(4) $AA$ and c = 16.8422(12) $AA$ for the Pt-based one (Pd: a = 4.6896 $AA$ and c = 16.891 AA). Specific heat experiments on Ce$_3$PtIn$_{11}$ and Ce$_3$PdIn$_{11}$ have revealed that both compounds undergo two successive magnetic transitions at T$_1$ ~ 2.2 K followed by T$_N$ ~ 2.0 K and T$_1$ ~ 1.7 K and T$_N$ ~ 1.5 K, respectively. Additionally, both compounds exhibit enhanced Sommerfeld coefficients yielding {gamma}$_{Pt}$ = 0.300 J/mol K$^2$ Ce ({gamma}$_{Pd}$ = 0.290 J/mol K$^2$ Ce), hence qualifying them as heavy fermion materials.
This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.
112 - V. Zlatic , R. Monnier 2005
The thermoelectric properties of intermetallic compounds with Ce or Yb ions are explained by the single-impurity Anderson model which takes into account the crystal-field splitting of the 4{it f} ground-state multiplet, and assumes a strong Coulomb repulsion which restricts the number of {it f} electrons or {it f} holes to $n_fleq 1$ for Ce and $n_f^{hole}leq 1$ for Yb ions. Using the non-crossing approximation and imposing the charge neutrality constraint on the local scattering problem at each temperature and pressure, the excitation spectrum and the transport coefficients of the model are obtained. The thermopower calculated in such a way exhibits all the characteristic features observed in Ce and Yb intermetallics. Calculating the effect of pressure on various characteristic energy scales of the model, we obtain the $(T,p)$ phase diagram which agrees with the experimental data on CeRu$_{2}$Si$_2$, CeCu$_{2}$Si$_2$, CePd$_{2}$Si$_2$, and similar compounds. The evolution of the thermopower and the electrical resistance as a function of temperature, pressure or doping is explained in terms of the crossovers between various fixed points of the model and the redistribution of the single-particle spectral weight within the Fermi window.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا