Do you want to publish a course? Click here

Heavy Fermion scaling: Uranium versus Cerium and Ytterbium compounds

170   0   0.0 ( 0 )
 Added by Jon Lawrence
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an effort to explore the differences between rare-earth-based and uranium-based heavy Fermion (HF) compounds that reflect the underlying difference between local 4$f$ moments and itinerant 5$f$ moments we analyze scaling laws that relate the low temperature neutron spectra of the primary (Kondo-esque) spin fluctuation to the specific heat and susceptibility. While the scaling appears to work very well for the rare earth intermediate valence compounds, for a number of key uranium compounds the scaling laws fail badly. There are two main reasons for this failure. First, the presence of antiferromagnetic (AF) fluctuations, which contribute significantly to the specific heat, alters the scaling ratios. Second, the scaling laws require knowledge of the high temperature moment degeneracy, which is often undetermined for itinerant 5$f$ electrons. By making plausible corrections for both effects, better scaling ratios are obtained for some uranium compounds. We point out that while both the uranium HF compounds and the rare earth intermediate valence (IV) compounds have spin fluctuation characteristic energies of order 5 - 25 meV, they differ in that the AF fluctuations that are usually seen in the U compounds are never seen in the rare earth IV compounds. This suggests that the 5f itineracy increases the f-f exchange relative to the rare earth case.



rate research

Read More

High-energy-resolution core-level and valence-band photoelectron spectroscopic studies were performed for the heavy Fermion uranium compounds UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, UPd2Al3, and UPt3 as well as typical localized and itinerant uranium compounds to understand the relationship between the uranium valence state and their core-level spectral line shapes. In addition to the main line and high-binding energy satellite structure recognized in the core-level spectra of uranium compounds, a shoulder structure on the lower binding energy side of the main lines of localized and nearly localized uranium compounds was also found. The spectral line shapes show a systematic variation depending on the U 5f electronic structure. The core-level spectra of UGe2, UCoGe, URhGe, URu2Si2, and UNi2Al3 are rather similar to those of itinerant compounds, suggesting that U 5f electrons in these compounds are well hybridized with ligand states. On the other hand, the core-level spectra of UPd2Al3 and UPt3 show considerably different spectral line shapes from those of the itinerant compounds, suggesting that U 5f electrons in UPd2Al3 and UPt3 are less hybridized with ligand states, leading to the correlated nature of U 5f electrons in these compounds. The dominant final state characters in their core-level spectra suggest that the numbers of 5f electrons in UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, and UPd2Al3 are close to but less than three, while that of UPt3 is close to two rather than to three.
Dynamical conductivity spectra s(w) have been measured for a diverse range of heavy-fermion (HF) Ce and Yb compounds. A characteristic excitation peak has been observed in the mid-infrared region of s(w) for all the compounds, and has been analyzed in terms of a simple model based on conduction (c)-f electron hybridized band. A universal scaling is found between the observed peak energies and the estimated c-f hybridization strengths of these HF compounds. This scaling demonstrates that the model of c-f hybridized band can generally and quantitatively describe the charge excitation spectra of a wide range of HF compounds.
A technique for measuring the electrical resistivity and absolute thermopower is presented for pressures up to 30 GPa, temperatures down to 25 mK and magnetic fields up to 10 T. With the examples of CeCu2Ge2 and CeCu2Si2 we focus on the interplay of normal phase and superconducting properties. With increasing pres- sure, the behaviour of CeCu2Ge2 evolves from that of an antiferromagnetically ordered Kondo system to that characteristic of an intermediate valence compound as the Kondo temperature increases by about two orders of magnitude. In the pressure window 8-10 < P < 20 GPa, a superconducting phase occurs which com- petes at low pressure with magnetic ordering. For CeCu2Si2 the effective mass of carriers is probed by both the coefficient of the Fermi liquid law and the ini- tial slope of the upper critical field. The magnetic instability is studied no- tably for CeRu2Ge2 and Yb-based compounds for which pressure-induced magnetic ordering tends to develop. Finally, contrary to conventional wisdom, we argue that in heavy fermions a large part of the residual resistivity is most likely not independent of temperature; tentatively ascribed to Kondo hole, it can be very pressure as well as sample dependent. [electrical resistivity, thermoelectric power, heavy fermion, magnetic order, superconductivity]
The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling $J_{ij}$ between the localized magnetic moments given by a generalization of the Mattis model which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also been used. The solution of the problem is presented as a phase diagram giving $T/{J}$ {it versus} $J_K/J$ where $T$ is the temperature, $J_{K}$ and ${J}$ are the strengths of the intrasite Kondo and the intersite random couplings, respectively. If $J_K/{J}$ is small, when temperature is decreased, there is a second order transition from a paramagnetic to a spin glass phase. For lower $T/{J}$, a first order transition appears between the spin glass phase and a region where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low ${T/{J}}$, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large $J_{K}/{J}$ values. These results can improve the theoretical description of the well known experimental phase diagram of $CeNi_{1-x}Cu_{x}$.
124 - Dai Aoki , Jacques Flouquet 2014
We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, together with the ferromagnetic quantum criticality and paramagnetic singularity on the Ising 5f-itinerant system UCoAl. Thanks to the variety of ordered moment in ferromagnetic superconductors from 1.5 muB to 0.05 muB, interesting systematic changes or similarities are clarified. All ferromagnetic superconductors show large upper critical field Hc2, and the field-reentrant (-reinforced) phenomena are observed in the field-temperature phase diagram, when the pressure or field direction is tuned for particular conditions. These phenomena are well explained by the ferromagnetic longitudinal fluctuations, which are induced by the magnetic field in transverse configurations. The large Hc2 might be also associated with possible additional effects of Fermi surface instabilities, such as Lifshitz-type singularities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا