Do you want to publish a course? Click here

Thermodynamic origin of the peak effect in the superconductor Nb3Sn

55   0   0.0 ( 0 )
 Added by Rolf Lortz Dr.
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a pronounced peak effect in the magnetization and the magnetocaloric coefficient in a single crystal of the superconductor Nb3Sn. As the origin of the magnetization peak effect in classical type-II superconductors is still strongly debated, we performed an investigation of its underlying thermodynamics. Calorimetric experiments performed during field sweeps at constant temperatures reveal that the sharp increase in the current density occurs concurrently with additional degrees of freedom in the specific heat due to thermal fluctuations and a liquid vortex phase. No latent heat due to a direct first-order melting of a Bragg glass phase into the liquid phase is found which we take as evidence for an intermediate glass phase with enhanced flux pinning. The Bragg glass phase can however be restored by a small AC field. In this case a first-order vortex melting transition with a clear hysteresis is found. In the absence of an AC field the intermediate glass phase is located within the field range of this hysteresis. This indicates that the peak effect is associated with the metastability of an underlying first-order vortex melting transition.



rate research

Read More

We have used small-angle-neutron-scattering (SANS) and ac magnetic susceptibility to investigate the global magnetic field H vs temperature T phase diagram of a single crystal Nb in which a first-order transition of Bragg-glass melting (disordering), a peak effect, and surface superconductivity are all observable. It was found that the disappearance of the peak effect is directly related to a multicritical behavior in the Bragg-glass transition. Four characteristic phase boundary lines have been identified on the H-T plane: a first-order line at high fields, a mean-field-like continuous transition line at low fields, and two continuous transition line associated with the onset of surface and bulk superconductivity. All four lines are found to meet at a multicritical point.
The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.0075NbSe2 single crystal, we show that at low temperatures, the vortex lattice in a 3-dimensional superconductor disorders in two steps across the peak effect. At the onset of the peak effect, the equilibrium Bragg glass transforms into an orientational glass through the proliferation of dislocations. At a higher field, the dislocations dissociate into isolated disclination giving rise to an amorphous vortex glass. We also show the existence of a variety of additional non-equilibrium metastable states, which can be accessed through different thermomagnetic cycling.
This paper presents the results of specific-heat and magnetization measurements, in particular their field-orientation dependence, on the first discovered heavy-fermion superconductor CeCu$_2$Si$_2$ ($T_{rm c} sim 0.6$ K). We discuss the superconducting gap structure and the origin of the anomalous pair-breaking phenomena, leading e.g., to the suppression of the upper critical field $H_{rm c2}$, found in the high-field region. The data show that the anomalous pair breaking becomes prominent below about 0.15 K in any field direction, but occurs closer to $H_{rm c2}$ for $H parallel c$. The presence of this anomaly is confirmed by the fact that the specific-heat and magnetization data satisfy standard thermodynamic relations. Concerning the gap structure, field-angle dependences of the low-temperature specific heat within the $ab$ and $ac$ planes do not show any evidence for gap nodes. From microscopic calculations in the framework of a two-band full-gap model, the power-law-like temperature dependences of $C$ and $1/T_1$, reminiscent of nodal superconductivity, have been reproduced reasonably. These facts further support multiband full-gap superconductivity in CeCu$_2$Si$_2$.
54 - P.-C. Ho , S. Moehlecke , 2003
The different pinning strengths of the flux line lattice in the peak effect (PE) region of a polycrystalline sample of CeRu$_2$ with a superconducting transition temperature {$T_c = 6.1$ K} have been probed by means of magnetization measurements with a SQUID magnetometer as the temperature $T$ and the magnetic field $H$ are varied. Magnetic relaxation measurements were used to monitor the flux line dynamics in the PE region. For {$T < 4.5$ K} and $H < H_P$, where $H_P$ is the field where the magnetization reaches a maximum in the PE region, the relaxation rate was found to be significantly larger in the descending-field branch of the PE than it is in other sections of the PE region. For {$T geq 4.5$ K}, the relaxation rate in the entire PE region is so large that the magnetization reached a stable (equilibrium) value within {$10^4$ s}. This experimentally determined stable state appears as an increase of the magnetization in the PE region and has a dome shape superimposed on a linear interpolation through the PE region. It was also found that the PE in CeRu$_2$ can be suppressed by rapid thermal cycling of the sample between {10 K} and {300 K} four times. The reversible magnetization after the PE has been suppressed coincides with the linear interpolation through the PE region, in contrast to the behavior of the equilibrium magnetization when the PE is present. PACS number: 74.25.Qt, 74.70.Ad
The high-energy kink or the waterfall effect seen in the photoemission spectra of the cuprates is suggestive of the coupling of the quasiparticles to a high energy bosonic mode with implications for the mechanism of superconductivity. Recent experiments however indicate that this effect may be an artifact produced entirely by the matrix element effects, i.e. by the way the photoemitted electron couples to the incident photons in the emission process. In order to address this issue directly, we have carried out realistic computations of the photo-intensity in ${rm Bi_2Sr_2CaCu_2O_8}$ (Bi2212) where the effects of the matrix element are included together with those of the corrections to the self-energy resulting from electronic excitations. Our results demonstrate that while the photoemission matrix element plays an important role in shaping the spectra, the waterfall effect is a clear signature of the presence of strong coupling of quasiparticles to electronic excitations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا