No Arabic abstract
The influence of depolarizing field on the magnitude and stability of a uniform polarization in ferroelectric capacitors and tunnel junctions is studied using a nonlinear thermodynamic theory. It is predicted that, in heterostructures involving strained epitaxial films and metal electrodes, the homogeneous polarization state may remain stable against transformations into the paraelectric phase and into polydomain states down to the nanoscale. This result supports the possibility of depolarizing-field-related resistive switching in ferroelectric tunnel junctions with dissimilar electrodes. The resistance on/off ratio in such junctions is shown to be governed by the difference between the reciprocal capacitances of screening space charges in the electrodes.
The magnetic stray field is an unavoidable consequence of ferromagnetic devices and sensors leading to a natural asymmetry in magnetic properties. Such asymmetry is particularly undesirable for magnetic random access memory applications where the free layer can exhibit bias. Using atomistic dipole-dipole calculations we numerically simulate the stray magnetic field emanating from the magnetic layers of a magnetic memory device with different geometries. We find that edge effects dominate the overall stray magnetic field in patterned devices and that a conventional synthetic antiferromagnet structure is only partially able to compensate the field at the free layer position. A granular reference layer is seen to provide near-field flux closure while additional patterning defects add significant complexity to the stray field in nanoscale devices. Finally we find that the stray field from a nanoscale antiferromagnet is surprisingly non-zero arising from the imperfect cancellation of magnetic sublattices due to edge defects. Our findings provide an outline of the role of different layer structures and defects in the effective stray magnetic field in nanoscale magnetic random access memory devices and atomistic calculations provide a useful tools to study the stray field effects arising from a wide range of defects.
We propose energy band engineering to enhance tunneling electroresistance (TER) in ferroelectric tunnel junctions (FTJs). We predict that an ultrathin dielectric layer with a smaller band gap, embedded into a ferroelectric barrier layer, acts as a switch controlling high and low conductance states of an FTJ depending on polarization orientation. Using first-principles modeling based on density functional theory, we investigate this phenomenon for a prototypical SrRuO3/BaTiO3/SrRuO3 FTJ with a BaSnO3 monolayer embedded in the BaTiO3 barrier. We show that in such a composite-barrier FTJ, ferroelectric polarization of BaTiO3 shifts the conduction band minimum of the BaSnO3 monolayer above or below the Fermi energy depending on polarization orientation. The resulting switching between direct and resonant tunneling leads to a TER effect with a giant ON/OFF conductance ratio. The proposed resonant band engineering of FTJs can serve as a viable tool to enhance their performance useful for device application.
We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.
Tunnel devices based on ferroelectric Hf0.5Zr0.5O2 (HZO) barriers hold great promises for emerging data storage and computing technologies. The resistance state of the device can be changed by a suitable writing voltage. However, the microscopic mechanisms leading to the resistance change are an intricate interplay between ferroelectric polarization controlled barrier properties and defect-related transport mechanisms. Here is shown the fundamental role of the microstructure of HZO films setting the balance between those contributions. The oxide film presents coherent or incoherent grain boundaries, associated to the existence of monoclinic and orthorhombic phases in HZO films, which are dictated by the mismatch with the substrates for epitaxial growth. These grain boundaries are the toggle that allows to obtain either large (up to 450 %) and fully reversible genuine polarization controlled electroresistance when only the orthorhombic phase is present or an irreversible and extremely large (1000-100000 %) electroresistance when both phases coexist.
Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report on giant magnetothermoelectric effect in Al2O3 magnetic tunnel junctions. The thermovoltage in this geometry can reach 1 mV. Moreover a magneto-thermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.