Do you want to publish a course? Click here

Unraveling ferroelectric polarization and ionic contributions to electroresistance in epitaxial Hf0.5Zr0.5O2 tunnel junctions

95   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tunnel devices based on ferroelectric Hf0.5Zr0.5O2 (HZO) barriers hold great promises for emerging data storage and computing technologies. The resistance state of the device can be changed by a suitable writing voltage. However, the microscopic mechanisms leading to the resistance change are an intricate interplay between ferroelectric polarization controlled barrier properties and defect-related transport mechanisms. Here is shown the fundamental role of the microstructure of HZO films setting the balance between those contributions. The oxide film presents coherent or incoherent grain boundaries, associated to the existence of monoclinic and orthorhombic phases in HZO films, which are dictated by the mismatch with the substrates for epitaxial growth. These grain boundaries are the toggle that allows to obtain either large (up to 450 %) and fully reversible genuine polarization controlled electroresistance when only the orthorhombic phase is present or an irreversible and extremely large (1000-100000 %) electroresistance when both phases coexist.



rate research

Read More

In this paper, a theoretical approach, comprising the non-equilibrium Greens function method for electronic transport and Landau-Khalatnikov equation for electric polarization dynamics, is presented to describe polarization-dependent tunneling electroresistance (TER) in ferroelectric tunnel junctions. Using appropriate contact, interface, and ferroelectric parameters, measured current-voltage characteristic curves in both inorganic (Co/BaTiO$_{3}$/La$_{0.67}$Sr$_{0.33}$MnO$_{3}$) and organic (Au/PVDF/W) ferroelectric tunnel junctions can be well described by the proposed approach. Furthermore, under this theoretical framework, the controversy of opposite TER signs observed experimentally by different groups in Co/BaTiO$_{3}$/La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ systems is addressed by considering the interface termination effects using the effective contact ratio, defined through the effective screening length and dielectric response at the metal/ferroelectric interfaces. Finally, our approach is extended to investigate the role of a CoO$_{x}$ buffer layer at the Co/BaTiO$_{3}$ interface in a ferroelectric tunnel memristor. It is shown that, to have a significant memristor behavior, not only the interface oxygen vacancies but also the CoO$_{x}$ layer thickness may vary with the applied bias.
Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2.
The metastable orthorhombic phase of hafnia is generally obtained in polycrystalline films, whereas in epitaxial films, its formation has been much less investigated. We have grown Hf0.5Zr0.5O2 films by pulsed laser deposition, and the growth window (temperature and oxygen pressure during deposition and film thickness) for epitaxial stabilization of the ferroelectric phase is mapped. The remnant ferroelectric polarization, up to around 24 uC/cm2, depends on the amount of orthorhombic phase and interplanar spacing and increases with temperature and pressure for a fixed film thickness. The leakage current decreases with an increase in thickness or temperature, or when decreasing oxygen pressure. The coercive electric field (EC) depends on thickness (t) according to the coercive electric field (Ec) - thickness (t)-2/3 scaling, which is observed for the first time in ferroelectric hafnia, and the scaling extends to thicknesses down to around 5 nm. The proven ability to tailor the functional properties of high-quality epitaxial ferroelectric Hf0.5Zr0.5O2 films paves the way toward understanding their ferroelectric properties and prototyping devices.
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented, cubic or pseudocubic setting, substrates with lattice parameter in the 3.71 - 4.21 A range. The lattice strain of the La0.67Sr0.33MnO3 electrode, determined by the lattice mismatch with the substrate, is critical in the stabilization of the orthorhombic phase of Hf0.5Zr0.5O2. On La0.67Sr0.33MnO3 electrodes tensile strained most of the Hf0.5Zr0.5O2 film is orthorhombic, whereas the monoclinic phase is favored when La0.67Sr0.33MnO3 is relaxed or compressively strained. Therefore, the Hf0.5Zr0.5O2 films on TbScO3 and GdScO3 substrates present substantially enhanced ferroelectric polarization in comparison to films on other substrates, including the commonly used SrTiO3. The capability of having epitaxial doped HfO2 films with controlled phase and polarization is of major interest for a better understanding of the ferroelectric properties and paves the way for fabrication of ferroelectric devices based on nanometric HfO2 films.
A wake-up free Hf0.5Zr0.5O2 (HZO) ferroelectric film with the highest remnant polarization (Pr) value to-date was achieved through tuning of the ozone pulse duration, the annealing process, and the metal/insulator interface. The ozone dosage during the atomic layer deposition of HZO films appears to be a crucial parameter in suppressing the mechanisms driving the wake-up effect. A tungsten capping electrode with a relatively low thermal expansion coefficient enables the induction of an in-plane tensile strain, which increases the formation of the orthorhombic phase while decreasing the formation of the monoclinic phase during the cooling step of the annealing process. Therefore, increasing the annealing temperature TA followed by rapid cooling to room temperature resulted in a substantial increase in the 2Pr value (64 uC/cm2). However, the leakage current increased considerably, which can affect the performance of metal-insulator-metal (MIM) devices. To reduce the leakage current while maintaining the mechanical stress during thermal annealing, a 10 nm Pt layer was inserted between the W/HZO bottom interface. This resulted in a ~ 20-fold decrease in the leakage current while the 2Pr value remained almost constant (~ 60 uC/cm2). The increase in barrier height at the Pt/HZO interface compared to that of the W/HZO interface coupled with the suppression of the formation of interfacial oxides (WOx) by the introduction of a Pt/HZO interface serves to decrease the leakage current.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا