We have developed a detector which records the full polarisation state of a terahertz (THz) pulse propagating in free space. The three-electrode photoconductive receiver simultaneously records the electric field of an electromagnetic pulse in two orthogonal directions as a function of time. A prototype device fabricated on Fe+ ion implanted InP exhibited a cross polarised extinction ratio better than 390:1. The design and optimisation of this device are discussed along with its significance for the development of new forms of polarisation sensitive time domain spectroscopy, including THz circular dichroism spectroscopy.
We describe the objectives, design and predicted performance of Clover, which is a ground-based experiment to measure the faint ``B-mode polarisation pattern in the cosmic microwave background (CMB). To achieve this goal, clover will make polarimetric observations of approximately 1000 deg^2 of the sky in spectral bands centred on 97, 150 and 225 GHz. The observations will be made with a two-mirror compact range antenna fed by profiled corrugated horns. The telescope beam sizes for each band are 7.5, 5.5 and 5.5 arcmin, respectively. The polarisation of the sky will be measured with a rotating half-wave plate and stationary analyser, which will be an orthomode transducer. The sky coverage combined with the angular resolution will allow us to measure the angular power spectra between 20 < l < 1000. Each frequency band will employ 192 single polarisation, photon noise limited TES bolometers cooled to 100 mK. The background-limited sensitivity of these detector arrays will allow us to constrain the tensor-to-scalar ratio to 0.026 at 3sigma, assuming any polarised foreground signals can be subtracted with minimal degradation to the 150 GHz sensitivity. Systematic errors will be mitigated by modulating the polarisation of the sky signals with the rotating half-wave plate, fast azimuth scans and periodic telescope rotations about its boresight. The three spectral bands will be divided into two separate but nearly identical instruments - one for 97 GHz and another for 150 and 225 GHz. The two instruments will be sited on identical three-axis mounts in the Atacama Desert in Chile near Pampa la Bola. Observations are expected to begin in late 2009.
The aim of this work is to describe the behavior of a device capable to generate high frequency (~THz) acoustic phonons. This device consists in a GaAs-AlGaAs double barrier heterostructure that, when an external bias is applied, produces a high rate of longitudinal optical LO phonons. These LO phonons are confined and they decay by stimulated emission of a pair of secondary longitudinal optical (LO_2) and transversal acoustic (TA) phonons. The last ones form an intense beam of coherent acoustic phonons. To study this effect, we start from a tight binding Hamiltonian that take into account the electron-phonon (e-ph) and phonon-phonon (ph-ph) interactions. We calculate the electronic current through the double barrier and we obtain a set of five coupled kinetic equations that describes the electron and phonon populations. The results obtained here confirm the behavior of the terahertz phonon laser, estimated by rougher treatments.
We have observed optical birefringence in liquids induced by single-cycle THz pulses with field strengths exceeding 100 kV/cm. The induced change in polarization is proportional to the square of the THz electric field. The time-dependent THz Kerr signal is composed of a fast electronic response that follows the individual cycles of the electric field and a slow exponential response associated with molecular orientation.
Simple analytical formulae, directly relating the experimental geometry and sample orientation to the measured R(M)XS scattered intensity are very useful to design experiments and analyse data. Such formulae can be obtained by the contraction of an expression containing the polarisations and crystal field tensors, and where the magnetisation vector acts as a rotation derivativecite{mirone}. The result of a contraction contains a scalar product of (rotated) polarisation vectors and the crystal field axis. The contraction rules give rise to combinatorial algorithms which can be efficiently treated by computers. In this work we provide and discuss a concise Mathematica code along with a few example applications to non-centrosymmetric magnetic systems.
The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in inorganic two-dimensional (2D) materials. Despite the impressive impact in a variety of photonic applications, the absence of energy gap has hampered its broader applicability in many optoelectronic devices. The recent advance of novel 2D materials, such as transition-metal dichalcogenides or atomically thin elemental materials, (e.g. silicene, germanene and phosphorene) promises a revolutionary step-change. Here we devise the first room-temperature Terahertz (THz) frequency detector exploiting few-layer phosphorene, e.g., a 10 nm thick flake of exfoliated crystalline black phosphorus (BP), as active channel of a field-effect transistor (FET). By exploiting the direct band gap of BP to fully switch between insulating and conducting states and by engineering proper antennas for efficient light harvesting, we reach detection performance comparable with commercial detection technologies, providing the first technological demonstration of a phosphorus-based active THz device.