Do you want to publish a course? Click here

Controlled Anisotropic Deformation of Ag Nanoparticles by Si Ion Irradiation

333   0   0.0 ( 0 )
 Added by Cecilia Noguez Dr
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The shape and alignment of silver nanoparticles embedded in a glass matrix is controlled using silicon ion irradiation. Symmetric silver nanoparticles are transformed into anisotropic particles whose larger axis is along the ion beam. Upon irradiation, the surface plasmon resonance of symmetric particles splits into two resonances whose separation depends on the fluence of the ion irradiation. Simulations of the optical absorbance show that the anisotropy is caused by the deformation and alignment of the nanoparticles, and that both properties are controlled with the irradiation fluence.



rate research

Read More

We present a detailed analysis of the band structure of the BiAg$_2$/Ag/Si(111) trilayer system by means of high resolution Angle Resolved Photoemission Spectroscopy (ARPES). BiAg2/Ag/Si(111) exhibits a complex spin polarized electronic structure due to giant spin-orbit interactions. We show that a complete set of constant energy ARPES maps, supplemented by a modified nearly free electron calculation, provides a unique insight into the structure of the spin polarized bands and spin gaps. We also show that the complex gap structure can be continuously tuned in energy by a controlled deposition of an alkali metal.
Atomistic simulations are performed to probe the anisotropic deformation in the compressions of face-centred-cubic metallic nanoparticles. In the elastic regime, the compressive load-depth behaviors can be characterized by the classical Hertzian model or flat punch model, depending on the surface configuration beneath indenter. On the onset of plasticity, atomic-scale surface steps serve as the source of heterogeneous dislocation in nanoparticle, which is distinct from indenting bulk materials. Under [111] compression, the gliding of jogged dislocation takes over the dominant plastic deformation. The plasticity is governed by nucleation and exhaustion of extended dislocation ribbons in [110] compression. Twin boundary migration mainly sustain the plastic deformation under [112] compression. This study is helpful to extract the mechanical properties of metallic nanoparticles and understand their anisotropic deformation behaviors.
Si nanopillars of less than 50 nm diameter have been irradiated in a helium ion microscope with a focused Ne$^+$ beam. The morphological changes due to ion beam irradiation at room temperature and elevated temperatures have been studied with the transmission electron microscope. We found that the shape changes of the nanopillars depend on irradiation-induced amorphization and thermally driven dynamic annealing. While at room temperature, the nanopillars evolve to a conical shape due to ion-induced plastic deformation and viscous flow of amorphized Si, simultaneous dynamic annealing during the irradiation at elevated temperatures prevents amorphization which is necessary for the viscous flow. Above the critical temperature of ion-induced amorphization, a steady decrease of the diameter was observed as a result of the dominating forward sputtering process through the nanopillar sidewalls. Under these conditions the nanopillars can be thinned down to a diameter of 10 nm in a well-controlled manner. A deeper understanding of the pillar thinning process has been achieved by a comparison of experimental results with 3D computer simulations based on the binary collision approximation.
Many of the proposed future applications of graphene require the controlled introduction of defects into its perfect lattice. Energetic ions provide one way of achieving this challenging goal. Single heavy ions with kinetic energies in the 100 MeV range will produce nanometer-sized defects on dielectric but generally not on crystalline metal surfaces. In a metal the ion-induced electronic excitations are efficiently dissipated by the conduction electrons before the transfer of energy to the lattice atoms sets in. Therefore, graphene is not expected to be irradiation sensitive beyond the creation of point defects. Here we show that graphene on a dielectric substrate sustains major modifications if irradiated under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.
The delafossite metals PdCoO$_{2}$, PtCoO$_{2}$ and PdCrO$_{2}$ are among the highest conductivity materials known, with low temperature mean free paths of tens of microns in the best as-grown single crystals. A key question is whether these very low resistive scattering rates result from strongly suppressed backscattering due to special features of the electronic structure, or are a consequence of highly unusual levels of crystalline perfection. We report the results of experiments in which high energy electron irradiation was used to introduce point disorder to the Pd and Pt layers in which the conduction occurs. We obtain the cross-section for formation of Frenkel pairs in absolute units, and cross-check our analysis with first principles calculations of the relevant atomic displacement energies. We observe an increase of resistivity that is linear in defect density with a slope consistent with scattering in the unitary limit. Our results enable us to deduce that the as-grown crystals contain extremely low levels of in-plane defects of approximately $0.001%$. This confirms that crystalline perfection is the most important factor in realizing the long mean free paths, and highlights how unusual these delafossite metals are in comparison with the vast majority of other multi-component oxides and alloys. We discuss the implications of our findings for future materials research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا