Do you want to publish a course? Click here

Thermodynamic stability of fluid-fluid phase separation in binary athermal mixtures: The role of nonadditivity

134   0   0.0 ( 0 )
 Added by Franz Saija
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermodynamic stability of fluid-fluid phase separation in binary nonadditive mixtures of hard-spheres for moderate size ratios. We are interested in elucidating the role played by small amounts of nonadditivity in determining the stability of fluid-fluid phase separation with respect to the fluid-solid phase transition. The demixing curves are built in the framework of the modified-hypernetted chain and of the Rogers-Young integral equation theories through the calculation of the Gibbs free energy. We also evaluate fluid-fluid phase equilibria within a first-order thermodynamic perturbation theory applied to an effective one-component potential obtained by integrating out the degrees of freedom of the small spheres. A qualitative agreement emerges between the two different approaches. We also address the determination of the freezing line by applying the first-order thermodynamic perturbation theory to the effective interaction between large spheres. Our results suggest that for intermediate size ratios a modest amount of nonadditivity, smaller than earlier thought, can be sufficient to drive the fluid-fluid critical point into the thermodinamically stable region of the phase diagram. These findings could be significant for rare-gas mixtures in extreme pressure and temperature conditions, where nonadditivity is expected to be rather small.

rate research

Read More

We present the results from dissipative particle dynamics (DPD) simulations of phase separation dynamics in ternary (ABC) fluids mixture in $d=3$ where components A and B represent the simple fluids and component C represents a polymeric fluid. Here, we study the role of polymeric fluid (C) on domain morphology by varying composition ratio, polymer chain length, and polymer stiffness. We observe that the system under consideration lies in the same dynamical universality class as a simple ternary fluids mixture. However, the scaling functions depend upon the parameters mentioned above as they change the time scale of the evolution morphologies. In all cases, the characteristic domain size follows: $l(t) sim t^{phi} $ with dynamic growth exponent $phi$, showing a crossover from the viscous hydrodynamic regime $(phi=1)$ to the inertial hydrodynamic regime $(phi=2/3)$ in the system at late times.
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.
120 - Yuchen Zheng 2021
In this article, the mechanism of the unexpected high fluidity in SiOx nanowire under modest irradiation was proposed, the high fluidity is attributed to the long lifetime of irradiation-induced holes, which arise from formation of small polarons. The holes created in irradiation could have a long lifetime, and localized in space, such missing of bonding electron could suppress the energy barrier(athermal activation effect) for a Pachner move of the network. The atomic level dynamics of the system is proposed by interaction of phonon and local configuration, the activation effect was then studied with passing rate of corresponding stochastic dynamic equation, calculation shows an exponential dependent of the time-lapse of Pachner move to lifetime of the activation, furthermore, connection between the local configuration time and viscosity of the fluid indicates a strong sensitivity of viscosity to lifetime of the athermal activation, such mechanism would give an effective interpretation to the unexpected high fluidity together with the passivation effect of the conductor on the material.
We review understanding of kinetics of fluid phase separation in various space dimensions. Morphological differences, percolating or disconnected, based on overall composition in a binary liquid or density in a vapor-liquid system, have been pointed out. Depending upon the morphology, various possible mechanisms and corresponding theoretical predictions for domain growth are discussed. On computational front, useful models and simulation methodologies have been presented. Theoretically predicted growth laws have been tested via molecular dynamics simulations of vapor-liquid transitions. In case of disconnected structure, the mechanism has been confirmed directly. This is a brief review on the topic for a special issue on coarsening dynamics, expected to appear in Comptes Rendus Physique.
147 - K. Bucior , L. Yelash , K. Binder 2008
As a generic model system of an asymmetric binary fluid mixture, hexadecane dissolved in carbon dioxide is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this model reproduces the real phase diagram reasonable well, and also the initial stages of spinodal decomposition in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between parallel walls that are repulsive for both types of molecules are simulated in a rather large system (1356 x 1356 x 67.8 A^3, corresponding to about 3.2 million atoms). Following the sudden system expansion, a complicated interplay between phase separation in the directions perpendicular and parallel to the walls is found: in the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with time, and simple coarsening described by power-law growth is only observed if the domain sizes are much larger than the film thickness.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا