No Arabic abstract
The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macro-phase separation) or micro-phase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting micro-phase separation, we observe rather striking pattern formation under confinement.
The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous paper [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]. The so-called rational-function approximation method and an approach combining accurate molecular dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation are considered. The density, composition, and size-ratio dependencies of the leading poles of the Fourier transforms of the total correlation functions $h_{ij} (r)$ of such mixtures are presented, those poles accounting for the asymptotic decay of $h_{ij} (r)$ for large $r$. Structural crossovers, in which the asymptotic wavelength of the oscillations of the total correlation functions changes discontinuously, are investigated. The behavior of the structural crossover lines as the size ratio and densities of the two species are changed is also discussed.
Multicomponent systems are ubiquitous in nature and industry. While the physics of few-component liquid mixtures (i.e., binary and ternary ones) is well-understood and routinely taught in undergraduate courses, the thermodynamic and kinetic properties of $N$-component mixtures with $N>3$ have remained relatively unexplored. An example of such a mixture is provided by the intracellular fluid, in which protein-rich droplets phase separate into distinct membraneless organelles. In this work, we investigate equilibrium phase behavior and morphology of $N$-component liquid mixtures within the Flory-Huggins theory of regular solutions. In order to determine the number of coexisting phases and their compositions, we developed a new algorithm for constructing complete phase diagrams, based on numerical convexification of the discretized free energy landscape. Together with a Cahn-Hilliard approach for kinetics, we employ this method to study mixtures with $N=4$ and $5$ components. We report on both the coarsening behavior of such systems, as well as the resulting morphologies in three spatial dimensions. We discuss how the number of coexisting phases and their compositions can be extracted with Principal Component Analysis (PCA) and K-Means clustering algorithms. Finally, we discuss how one can reverse engineer the interaction parameters and volume fractions of components in order to achieve a range of desired packing structures, such as nested `Russian dolls and encapsulated Janus droplets.
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and D. M. Heyes, Phys. Rev. E 95, 062104 (2017)], combines accurate molecular-dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation. A comparison of the direct correlation functions obtained with the present scheme with those derived from theoretical results stemming from the Percus-Yevick (PY) closure and the so-called rational-function approximation (RFA) is performed. The density dependence of the leading poles of the Fourier transforms of the total correlation functions and the decay of the pair correlation functions of the mixtures are also addressed and compared to the predictions of the two theoretical approximations. A very good overall agreement between the results of the present scheme and those of the RFA is found, thus suggesting that the latter (which is an improvement over the PY approximation) can safely be used to predict reasonably well the long-range behavior, including the structural crossover, of the correlation functions of additive binary hard-sphere mixtures.
Responsive particles, such as biomacromolecules or hydrogels, display a broad and polymodal distribution of conformations and have thus the ability to change their properties (e.g, size, shape, charge density, etc.) substantially in response to external fields or to their local environment (e.g., mediated by cosolutes or pH). Here, we discuss the basic statistical mechanics for a model of responsive colloids (RCs) by introducing an additional property degree of freedom as a collective variable in a formal coarse-graining procedure. The latter leads to an additional one-body term in the coarse-grained (CG) free energy, defining a single-particle property distribution for an individual polydisperse RC. We argue that in the equilibrium thermodynamic limit such a CG system of RCs behaves like a conventional polydisperse system of non-responsive particles. We then illustrate the action of external fields, which impose local (position-dependent) property distributions leading to non-trivial effects on the spatial one-body property and density profiles, even for an ideal (non-interacting) gas of RCs. We finally apply density functional theory in the local density approximation (LDA-DFT) to discuss the effects of particle interactions for specific examples of i) a suspension of RCs in an external field linear in both position and property, ii) a suspension of RCs with highly localized properties (sizes) confined between two walls, and iii) a two-component suspension where an inhomogeneously distributed (non-responsive) cosolute component, as found, e.g., in the studies of osmolyte- or salt-induced collapse/swelling transitions of thermosensitive polymers, modifies the local properties and density of the RC liquid.
We study the thermodynamic stability of fluid-fluid phase separation in binary nonadditive mixtures of hard-spheres for moderate size ratios. We are interested in elucidating the role played by small amounts of nonadditivity in determining the stability of fluid-fluid phase separation with respect to the fluid-solid phase transition. The demixing curves are built in the framework of the modified-hypernetted chain and of the Rogers-Young integral equation theories through the calculation of the Gibbs free energy. We also evaluate fluid-fluid phase equilibria within a first-order thermodynamic perturbation theory applied to an effective one-component potential obtained by integrating out the degrees of freedom of the small spheres. A qualitative agreement emerges between the two different approaches. We also address the determination of the freezing line by applying the first-order thermodynamic perturbation theory to the effective interaction between large spheres. Our results suggest that for intermediate size ratios a modest amount of nonadditivity, smaller than earlier thought, can be sufficient to drive the fluid-fluid critical point into the thermodinamically stable region of the phase diagram. These findings could be significant for rare-gas mixtures in extreme pressure and temperature conditions, where nonadditivity is expected to be rather small.