Do you want to publish a course? Click here

Hole crystallization in semiconductors

290   0   0.0 ( 0 )
 Added by Michael Bonitz
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.



rate research

Read More

One-dimensional (1D) electron-hole (e-h) systems in a high-density regime is investigated by means of bozonization techniques. It turned out that the systems are insulating even at the high density limit and that the exciton Mott transition (insulator-to-metal transition) never occurs at absolute zero temperature. The insulating ground state exhibits a strong instability towards the crystallization of biexcitons.
We use numerical simulations to study the crystallization of monodisperse systems of hard aspherical particles. We find that particle shape and crystallizability can be easily related to each other when particles are characterized in terms of two simple and experimentally accessible order parameters: one based on the particle surface-to-volume ratio, and the other on the angular distribution of the perturbations away from the ideal spherical shape. We present a phase diagram obtained by exploring the crystallizability of 487 different particle shapes across the two-order-parameter spectrum. Finally, we consider the physical properties of the crystalline structures accessible to aspherical particles, and discuss limits and relevance of our results.
We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.
We report an experimental study of the emergence of non-trivial topological winding and long-range order across the paramagnetic to skyrmion lattice transition in the transition metal helimagnet MnSi. Combining measurements of the susceptibility with small angle neutron scattering, neutron resonance spin echo spectroscopy and all-electrical microwave spectroscopy, we find evidence of skyrmion textures in the paramagnetic state exceeding $10^3$AA with lifetimes above several 10$^{-9}$s. Our experimental findings establish that the paramagnetic to skyrmion lattice transition in MnSi is well-described by the Landau soft-mode mechanism of weak crystallization, originally proposed in the context of the liquid to crystal transition. As a key aspect of this theoretical model, the modulation-vectors of periodic small amplitude components of the magnetization form triangles that add to zero. In excellent agreement with our experimental findings, these triangles of the modulation-vectors entail the presence of the non-trivial topological winding of skyrmions already in the paramagnetic state of MnSi when approaching the skyrmion lattice transition.
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principle computer simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا