Do you want to publish a course? Click here

Charge order in photosensitive Bi0.4Ca0.6MnO3 films

72   0   0.0 ( 0 )
 Added by Christie S. Nelson
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report structural and electronic characterization of the charge order phase in Bi0.4Ca0.6MnO3 films, in which photoinduced resistivity changes have been observed at temperatures approaching room temperature. In all films, lattice distortions associated with the charge order are observed, and both the wavevectors and displacements of the distortions are in the plane of the film. Films under compressive and tensile strain are observed to have different resonant x-ray scattering characteristics-- a result that may shed light on the mechanism responsible for the photosensitivity exhibited by this material.



rate research

Read More

Solution-grown single crystals of Fe2OBO3 were characterized by specific heat, Mossbauer spectroscopy, and x-ray diffraction. A peak in the specific heat at 340 K indicates the onset of charge order. Evidence for a doubling of the unit cell at low temperature is presented. Combining structural refinement of diffraction data and Mossbauer spectra, domains with diagonal charge order are established. Bond-valence-sum analysis indicates integer valence states of the Fe ions in the charge ordered phase, suggesting Fe2OBO3 is the clearest example of ionic charge order so far.
Oxygen vacancies play a crucial role in the control of the electronic, magnetic, ionic, and transport properties of functional oxide perovskites. Rare earth nickelates (RENiO$_{3-x}$) have emerged over the years as a rich platform to study the interplay between the lattice, the electronic structure, and ordered magnetism. In this study, we investigate the evolution of the electronic and magnetic structure in thin films of RENiO$_{3-x}$, using a combination of X-ray absorption spectroscopy and imaging, resonant X-ray scattering, and extended multiplet ligand field theory modeling. We find that oxygen vacancies modify the electronic configuration within the Ni-O orbital manifolds, leading to a dramatic evolution of long-range electronic transport pathways despite the absence of nanoscale phase separation. Remarkably, magnetism is robust to substantial levels of carrier doping, and only a moderate weakening of the $(1/4, 1/4, 1/4)_{pc}$ antiferromagnetic order parameter is observed, whereas the magnetic transition temperature is largely unchanged. Only at a certain point long-range magnetism is abruptly erased without an accompanying structural transition. We propose the progressive disruption of the 3D magnetic superexchange pathways upon introduction of point defects as the mechanism behind the sudden collapse of magnetic order in oxygen-deficient nickelates. Our work demonstrates that, unlike most other oxides, ordered magnetism in RENiO$_{3-x}$ is mostly insensitive to carrier doping. The sudden collapse of ordered magnetism upon oxygen removal may provide a new mechanism for solid-state magneto-ionic switching and new applications in antiferromagnetic spintronics.
The temperature dependence of charge order in Fe2OBO3 was investigated by resistivity and differential scanning calorimetry measurements, Mossbauer spectroscopy, and synchrotron x-ray scattering, revealing an intermediate phase between room temperature and 340 K, characterized by coexisting mobile and immobile carriers, and by incommensurate superstructure modulations with temperature-dependent propagation vector (1/2,0,tau). The incommensurate modulations arise from specific anti-phase boundaries with low energy cost due to geometrical charge frustration.
We report x-ray synchrotron experiments on epitaxial films of uranium, deposited on niobium and tungsten seed layers. Despite similar lattice parameters for these refractory metals, the uranium epitaxial arrangements are different and the strains propagated along the a-axis of the uranium layers are of opposite sign. At low temperatures these changes in epitaxy result in dramatic modifications to the behavior of the charge-density wave in uranium. The differences are explained with the current theory for the electron-phonon coupling in the uranium lattice. Our results emphasize the intriguing possibilities of producing epitaxial films of elements that have complex structures like the light actinides uranium to plutonium.
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا