Do you want to publish a course? Click here

The spin glass-antiferromagnetism competition in Kondo-lattice systems in the presence of a transverse applied magnetic field

110   0   0.0 ( 0 )
 Added by F\\'abio Zimmer
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and a random Gaussian interlattice interaction in the presence of a transverse field $Gamma$. The $Gamma$ field is introduced as a quantum mechanism to produce spin flipping and the random coupling has average $-2J_0/N$ and variance $32 J^{2}/N$. The path integral formalism with Grassmann fields is used to study this fermionic problem, in which the disorder is treated within the framework of the replica trick. The free energy and the order parameters are obtained using the static ansatz. In this many parameters problem, we choose $J_0/J approx (J_{K}/J)^{2}$ and $Gamma/J approx (J_{K}/J)^{2}$ to allow a better comparison with the experimental findings. The obtained phase diagram has not only the same sequence as the experimental one for $Ce_{2}Au_{1-x}Co_{x}Si_{3}$, but mainly, it also shows a qualitative agreement concerning the behavior of the freezing temperature and the Neel temperature which decreases until a Quantum Critical Point (QCP).



rate research

Read More

A theory is proposed to describe the competition among antiferromagnetism (AF), spin glass (SG) and Kondo effect. The model describes two Kondo sublattices with an intrasite Kondo interaction strength $J_{K}$ and an interlattice quantum Ising interaction in the presence of a transverse field $Gamma$. The interlattice coupling is a random Gaussian distributed variable (with average $-2J_0/N$ and variance $32 J^{2}/N$) while the $Gamma$ field is introduced as a quantum mechanism to produce spin flipping. The path integral formalism is used to study this fermionic problem where the spin operators are represented by bilinear combinations of Grassmann fields. The disorder is treated within the framework of the replica trick. The free energy and the order parameters of the problem are obtained by using the static ansatz and by choosing both $J_0/J$ and $Gamma/J approx (J_k/J)^2$ to allow, as previously, a better comparison with the experimental findings. The results indicate the presence of a SG solution at low $J_K/J$ and for temperature $T<T_{f}$ ($T_{f}$ is the freezing temperature). When $J_K/J$ is increased, a mixed phase AF+SG appears, then an AF solution and finally a Kondo state is obtained for high values of $J_{K}/J$. Moreover, the behaviors of the freezing and Neel temperatures are also affected by the relationship between $J_{K}$ and the transverse field $Gamma$. The first one presents a slight decrease while the second one decreases towards a Quantum Critical Point (QCP). The obtained phase diagram has the same sequence as the experimental one for $Ce_{2}Au_{1-x}Co_{x}Si_{3}$, if $J_{K}$ is assumed to increase with $x$, and in addition, it also shows a qualitative agreement concerning the behavior of the freezing and the Neel temperatures.
Torque, torque relaxation, and magnetization measurements on a AuFe spin glass sample are reported. The experiments carried out up to 7 T show a transverse irreversibility line in the (H,T) plane up to high applied fields, and a distinct strong longitudinal irreversibility line at lower fields. The data demonstrate for that this type of sample, a Heisenberg spin glass with moderately strong anisotropy, the spin glass ordered state survives under high applied fields in contrast to predictions of certain droplet type scaling models. The overall phase diagram closely ressembles those of mean field or chiral models, which both have replica symmetry breaking transitions.
110 - Alba Theumann , B. Coqblin 2004
The Kondo-Spin Glass competition is studied in a theoretical model of a Kondo lattice with an intra-site Kondo type exchange interaction treated within the mean field approximation, an inter-site quantum Ising exchange interaction with random couplings among localized spins and an additional transverse field in the x direction, which represents a simple quantum mechanism of spin flipping. We obtain two second order transition lines from the spin-glass state to the paramagnetic one and then to the Kondo state. For a reasonable set of the different parameters, the two second order transition lines do not intersect and end in two distinct QCP.
We investigate the inverse freezing in the fermionic Ising spin-glass (FISG) model in a transverse field $Gamma$. The grand canonical potential is calculated in the static approximation, replica symmetry and one-step replica symmetry breaking Parisi scheme. It is argued that the average occupation per site $n$ is strongly affected by $Gamma$. As consequence, the boundary phase is modified and, therefore, the reentrance associated with the inverse freezing is modified too.
The stability of spin-glass (SG) phase is analyzed in detail for a fermionic Ising SG (FISG) model in the presence of a magnetic transverse field $Gamma$. The fermionic path integral formalism, replica method and static approach have been used to obtain the thermodynamic potential within one step replica symmetry breaking ansatz. The replica symmetry (RS) results show that the SG phase is always unstable against the replicon. Moreover, the two other eigenvalues $lambda_{pm}$ of the Hessian matrix (related to the diagonal elements of the replica matrix) can indicate an additional instability to the SG phase, which enhances when $Gamma$ is increased. Therefore, this result suggests that the study of the replicon can not be enough to guarantee the RS stability in the present quantum FISG model, especially near the quantum critical point. In particular, the FISG model allows changing the occupation number of sites, so one can get a first order transition when the chemical potential exceeds a certain value. In this region, the replicon and the $lambda_{pm}$ indicate instability problems for the SG solution close to all range of first order boundary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا