Do you want to publish a course? Click here

Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment

67   0   0.0 ( 0 )
 Added by Janina Maultzsch
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comprehensive study of the chiral-index assignment of carbon nanotubes in aqueous suspensions by resonant Raman scattering of the radial breathing mode. We determine the energies of the first optical transition in metallic tubes and of the second optical transition in semiconducting tubes for more than 50 chiral indices. The assignment is unique and does not depend on empirical parameters. The systematics of the so-called branches in the Kataura plot are discussed; many properties of the tubes are similar for members of the same branch. We show how the radial breathing modes observed in a single Raman spectrum can be easily assigned based on these systematics. In addition, empirical fits provide the energies and radial breathing modes for all metallic and semiconducting nanotubes with diameters between 0.6 and 1.5 nm. We discuss the relation between the frequency of the radial breathing mode and tube diameter. Finally, from the Raman intensities we obtain information on the electron-phonon coupling.



rate research

Read More

131 - Gang Wu , Jian Zhou , 2007
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon nanotubes are studied in a simple analytical model, in which the interaction force constants (FCs) can be obtained analytically from the continuous model. The RBLMs frequencies are obtained by solving the dynamical matrix, and their relationship with the tube radii can be obtained analytically, offering a powerful experimental tool for determining precisely the radii of the multi-walled carbon nanotubes.
We have calculated the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotubes (SWNTs) using ab-initio Hartre-Fock method (HF) together with force field calculations. The gas phase binding energies follow the sequence G $>$ A $>$ T $>$ C. We show that main contribution to binding energy comes from van-der Wall (vdW) interaction between nanotube and nucleobases. We compare these results with the interaction of nucleobases with graphene. We show that the binding energy of bases with SWNTs is much lower than the graphene but the sequence remains same. When we include the effect of solvation energy (Poisson-Boltzman (PB) solver at HF level), the binding energy follow the sequence G $>$ T $>$ A $>$ C $>$, which explains the experimentcite{zheng} that oligonucleotides made of thymine bases are more effective in dispersing the SWNT in aqueous solution as compared to poly (A) and poly (C). We also demonstrate experimentally that there is differential binding affinity of nucleobases with the single-walled carbon nanotubes (SWNTs) by directly measuring the binding strength using isothermal titration (micro) calorimetry. The binding sequence of the nucleobases varies as thymine (T) $>$ adenine (A) $>$ cytosine (C), in agreement with our calculation.
157 - M. Salvato , M. Cirillo , M. Lucci 2008
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose axes are aligned along the direction of the externally supplied bias current. The data are found consistent with a charge transport model governed by the tunnelling between metallic regions occurring through potential barriers generated by nanotubes contact areas or bundles surfaces. Based on this model and on experimental data we describe quantitatively the dependencies of the amplitude of these barriers upon bias current and temperature.
116 - H. Telg , J. Maultzsch , S. Reich 2004
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency and Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n_1,n_2) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega_RBM=214.4cm^-1nm/d+18.7cm^-1. In contrast to luminescence experiments we observe all chiralities including zig-zag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab-initio calculations.
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed close to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا