We investigate Kondo effect and spin blockade observed on a many-electron quantum dot and study the magnetic field dependence. At lower fields a pronounced Kondo effect is found which is replaced by spin blockade at higher fields. In an intermediate regime both effects are visible. We make use of this combined effect to gain information about the internal spin configuration of our quantum dot. We find that the data cannot be explained assuming regular filling of electronic orbitals. Instead spin polarized filling seems to be probable.
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and conductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.Hk
We calculate the nonequilibrium conductance of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads. The system has been used recently to perform pseudospin spectroscopy by controlling independently the voltages of the four leads. The pseudospin is defined by the orbital occupation of one or the other dot. Starting from the SU(4) symmetric point of spin and pseudospin degeneracy in the Kondo regime, for an odd number of electrons in the system, we show how the conductance through each dot varies as the symmetry is reduced to SU(2) by a pseudo-Zeeman splitting, and as bias voltages are applied to any of the dots. We analize the expected behavior of the system in general, and predict characteristic fingerprint features of the SU(4) to SU(2) crossover that have not been observed so far.
Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from $SU(4)$ to $SU(2)$ symmetry of the ground state. High-sensitive current noise measurements combined with the non-equilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover. Our achievement demonstrates that non-linear noise constitutes a measure of quantum fluctuations that can be used to tackle quantum phase transitions.
A whole series of complementary studies have been performed on the same, single nanowire containing a quantum dot: cathodoluminescence spectroscopy and imaging, micro-photoluminescence spectroscopy under magnetic field and as a function of temperature, and energy-dispersive X-ray spectrometry and imaging. The ZnTe nanowire was deposited on a Si 3 N 4 membrane with Ti/Al patterns. The complete set of data shows that the CdTe quantum dot features the heavy-hole state as a ground state, although the compressive mismatch strain promotes a light-hole ground state as soon as the aspect ratio is larger than unity (elongated dot). A numerical calculation of the whole structure shows that the transition from the heavy-hole to the light-hole configuration is pushed toward values of the aspect ratio much larger than unity by the presence of a (Zn,Mg)Te shell, and that the effect is further enhanced by a small valence band offset between the semiconductors in the dot and around it.
Quantum phase transitions (QPTs) in qubit systems are known to produce singularities in the entanglement, which could in turn be used to probe the QPT. Current proposals to measure the entanglement are challenging however, because of their nonlocal nature. Here we show that a double quantum dot coupled locally to a spin chain provides an alternative and efficient probe of QPTs. We propose an experiment to observe a QPT in a triple dot, based on the well-known singlet projection technique.