Do you want to publish a course? Click here

Interaction between superconductor and ferromagnetic domains in iron sheath: peak effect in MgB2/Fe wires

215   0   0.0 ( 0 )
 Added by Joseph Horvat
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Interaction between the superconductor and ferromagnet in MgB2/Fe wires results in either a plateau or a peak effect in the field dependence of transport critical current, Ic(H). This is in addition to magnetic shielding of external field. Current theoretical models cannot account for the observed peak effect in Ic(H). This paper shows that the theoretical explanation of the peak effect should be sought in terms of interaction between superconductor and magnetic domain structure, obtained after re-magnetization of the iron sheath by the self-field of the current. There is a minimum value of critical current, below which the re-magnetization of the iron sheath and peak effect in Ic(H) are not observed.



rate research

Read More

Local magneto-optical imaging and global magnetization measurement techniques were used in order to visualize shielding effects in the superconducting core of MgB_2 wires sheathed by ferromagnetic iron (Fe). The magnetic shielding can provide a Meissner-like state in the superconducting core in applied magnetic fields up to ~1T. The maximum shielding fields are shown to correlate with the saturation fields of magnetization in Fe-sheaths. The shielding has been found to facilitate the appearance of an overcritical state, which is capable of achieving a critical current density (J_c) in the core which is larger than J_c in the same wire without the sheath by a factor of ~2. Other effects caused by the magnetic interaction between the sheath and the superconducting core are discussed.
We use a tunable laser ARPES to study the electronic properties of the prototypical multiband BCS superconductor MgB2. Our data reveal a strong renormalization of the dispersion (kink) at ~65 meV, which is caused by coupling of electrons to the E2g phonon mode. In contrast to cuprates, the 65 meV kink in MgB2 does not change significantly across Tc. More interestingly, we observe strong coupling to a second, lower energy collective mode at binding energy of 10 meV. This excitation vanishes above Tc and is likely a signature of the elusive Leggett mode.
Strong electron interactions in solids increase effective mass, and shrink the electronic bands [1]. One of the most unique and robust experimental facts about iron-based superconductors [2-4] is the renormalization of the conduction band by factor of 3 near the Fermi level [5-9]. Obviously related to superconductivity, this unusual behaviour remains unexplained. Here, by studying the momentum-resolved spectrum of the whole valence band in a representative material, we show that this phenomenon originates from electronic interaction on a much larger energy scale. We observe an abrupt depletion of the spectral weight in the middle of the Fe $3d$ band, which is accompanied by a drastic increase of the scattering rate. Remarkably, all spectral anomalies including the low-energy renormalization can be explained by coupling to excitations, strongly peaked at about 0.5 eV. Such high-energy interaction distinguishes all unconventional superconductors from common metals.
54 - R. Lortz , N. Musolino , Y. Wang 2006
We report a pronounced peak effect in the magnetization and the magnetocaloric coefficient in a single crystal of the superconductor Nb3Sn. As the origin of the magnetization peak effect in classical type-II superconductors is still strongly debated, we performed an investigation of its underlying thermodynamics. Calorimetric experiments performed during field sweeps at constant temperatures reveal that the sharp increase in the current density occurs concurrently with additional degrees of freedom in the specific heat due to thermal fluctuations and a liquid vortex phase. No latent heat due to a direct first-order melting of a Bragg glass phase into the liquid phase is found which we take as evidence for an intermediate glass phase with enhanced flux pinning. The Bragg glass phase can however be restored by a small AC field. In this case a first-order vortex melting transition with a clear hysteresis is found. In the absence of an AC field the intermediate glass phase is located within the field range of this hysteresis. This indicates that the peak effect is associated with the metastability of an underlying first-order vortex melting transition.
308 - A. Dulcic , M. Pozek , D. Paar 2002
Field and temperature microwave measurements have been carried out on MgB2 thin film grown on Al2O3 substrate. The analysis reveals the mean field coherence length xi_{MF} in the mixed state and a temperature independent anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the superconducting transition, the scaling of the fluctuation conductivity yields the Ginzburg-Landau coherence length with a different anisotropy ratio gamma_{GL} = 2.8, also temperature independent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا