No Arabic abstract
We have studied effects of interspecies attraction in a Fermi-Bose mixture over a large regime of particle numbers in the 40K / 87Rb system. We report on the observation of a mean field driven collapse at critical particle numbers of 1.2 million 87Rb atoms in the condensate and 750,000 40K atoms consistent with mean field theory for an interspecies scattering length of -281(15) Bohr radii [S. Inouye et al., Phys. Rev. Lett. 93, 183201 (2004)]. For overcritical particle numbers, we see evidence for revivals of the collapse. Before and after the collapse, the axial expansion profileof the 40K cloud is strongly modified and reflects the in-trap density profile distorted by the mean field interspecies attraction. Part of our detailed study of the decay dynamics and mechanisms is a measurement of the (87Rb - 87Rb- 40K) three-body loss coefficient K3=(2.8+-1.1)*10^-28 cm^6/s, which is an important input parameter for dynamical studies of the system.
We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons and fermions recovers the expected physical limit of a Fermi-Fermi mixture of molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution function, and the chemical potentials. By extending these equations to a trapped system, we determine how to tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the indirect Pauli exclusion effect on the boson momentum distribution function. For the homogeneous system, we present finally a Diffusion Monte Carlo simulation which confirms the occurrence of such a peculiar effect.
The zero temperature phase diagram of binary boson-fermion mixtures in two-colour superlattices is investigated. The eigenvalue problem associated with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical diagonalization technique, supplemented by an adaptive basis truncation scheme. The physically motivated basis truncation allows to access larger systems in a fully controlled and very flexible framework. Several experimentally relevant observables, such as the matter-wave interference pattern and the condensatefraction, are investigated in order to explore the rich phase diagram. At symmetric half filling a phase similar to the Mott-insulating phase in a commensurate purely bosonic system is identified and an analogy to recent experiments is pointed out. Furthermore a phase of complete localization of the bosonic species generated by the repulsive boson-fermion interaction is identified. These localized condensates are of a different nature than the genuine Bose-Einstein condensates in optical lattices.
A unitary Fermi gas has a surprisingly rich spectrum of large amplitude modes of the pairing field alone, which defies a description within a formalism involving only a reduced set of degrees of freedom, such as quantum hydrodynamics or a Landau-Ginzburg-like description. These modes are very slow, with oscillation frequencies well below the pairing gap, which makes their damping through quasiparticle excitations quite ineffective. In atomic traps these modes couple naturally with the density oscillations, and the corresponding oscillations of the atomic cloud are an example of a new type of collective mode in superfluid Fermi systems. They have lower frequencies than the compressional collective hydrodynamic oscillations, have a non-spherical momentum distribution, and could be excited by a quick time variation of the scattering length.
We study the effects of interaction between bosons and fermions in a Bose-Fermi mixtures loaded in an optical lattice. We concentrate on the destruction of a bosonic Mott phase driven by repulsive interaction between bosons and fermions. Once the Mott phase is destroyed, the system enters a superfluid phase where the movements of bosons and fermions are correlated. We show that this phase has simultaneously correlations reminiscent of a conventional superfluid and of a pseudo-spin density wave order.
We investigate magnetic properties and statistical effects in 1D strongly repulsive two-component fermions and in a 1D mixture of strongly repulsive polarized fermions and bosons. Universality in the characteristics of phase transitions, magnetization and susceptibility in the presence of an external magnetic field $H$ are analyzed from the exact thermodynamic Bethe ansatz solution. We show explicitly that polarized fermions with a repulsive interaction have antiferromagnetic behavior at zero temperature. A universality class of linear field-dependent magnetization persists for weak and finite strong interaction. The system is fully polarized when the external field exceeds the critical value $H^F_capprox frac{8}{gamma}E_F$, where $E_F$ is the Fermi energy and $gamma$ is the dimensionless interaction strength. In contrast, the mixture of polarized fermions and bosons in an external field exhibits square-root field-dependent magnetization in the vicinities of H=0 and the critical value $H=H^M_capprox frac{16}{gamma}E_F$. We find that a pure boson phase occurs in the absence of the external field, fully-polarized fermions and bosons coexist for $0<H<H^M_c$, and a fully-polarized fermion phase occurs for $Hge H_c^M$. This phase diagram for the Bose-Fermi mixture is reminiscent of weakly attractive fermions with population imbalance, where the interacting fermions with opposite spins form singlet pairs.