Do you want to publish a course? Click here

Mott insulators and correlated superfluids in ultracold Bose-Fermi mixtures

111   0   0.0 ( 0 )
 Added by George Batrouni
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effects of interaction between bosons and fermions in a Bose-Fermi mixtures loaded in an optical lattice. We concentrate on the destruction of a bosonic Mott phase driven by repulsive interaction between bosons and fermions. Once the Mott phase is destroyed, the system enters a superfluid phase where the movements of bosons and fermions are correlated. We show that this phase has simultaneously correlations reminiscent of a conventional superfluid and of a pseudo-spin density wave order.

rate research

Read More

A mixed dimensional system of fermions in two layers immersed in a Bose-Einstein condensate (BEC) is shown to be a promising setup to realise topological superfluids with time-reversal symmetry (TRS). The induced interaction between the fermions mediated by the BEC gives rise to a competition between p-wave pairing within each layer and s-wave pairing between the layers. When the layers are far apart, intra-layer pairing dominates and the system forms a topological superfluid either with or without TRS. With decreasing layer separation or increasing BEC coherence length, inter-layer pairing sets in. We show that this leads either to a second order transition breaking TRS where the edge modes gradually become gapped, or to a first order transition to a topologically trivial s-wave superfluid. Our results provide a realistic roadmap for experimentally realising a topological superfluid with TRS in a cold atomic system.
95 - F. Schmitt , M. Hild , R. Roth 2006
The zero temperature phase diagram of binary boson-fermion mixtures in two-colour superlattices is investigated. The eigenvalue problem associated with the Bose-Fermi-Hubbard Hamiltonian is solved using an exact numerical diagonalization technique, supplemented by an adaptive basis truncation scheme. The physically motivated basis truncation allows to access larger systems in a fully controlled and very flexible framework. Several experimentally relevant observables, such as the matter-wave interference pattern and the condensatefraction, are investigated in order to explore the rich phase diagram. At symmetric half filling a phase similar to the Mott-insulating phase in a commensurate purely bosonic system is identified and an analogy to recent experiments is pointed out. Furthermore a phase of complete localization of the bosonic species generated by the repulsive boson-fermion interaction is identified. These localized condensates are of a different nature than the genuine Bose-Einstein condensates in optical lattices.
We investigate magnetic properties and statistical effects in 1D strongly repulsive two-component fermions and in a 1D mixture of strongly repulsive polarized fermions and bosons. Universality in the characteristics of phase transitions, magnetization and susceptibility in the presence of an external magnetic field $H$ are analyzed from the exact thermodynamic Bethe ansatz solution. We show explicitly that polarized fermions with a repulsive interaction have antiferromagnetic behavior at zero temperature. A universality class of linear field-dependent magnetization persists for weak and finite strong interaction. The system is fully polarized when the external field exceeds the critical value $H^F_capprox frac{8}{gamma}E_F$, where $E_F$ is the Fermi energy and $gamma$ is the dimensionless interaction strength. In contrast, the mixture of polarized fermions and bosons in an external field exhibits square-root field-dependent magnetization in the vicinities of H=0 and the critical value $H=H^M_capprox frac{16}{gamma}E_F$. We find that a pure boson phase occurs in the absence of the external field, fully-polarized fermions and bosons coexist for $0<H<H^M_c$, and a fully-polarized fermion phase occurs for $Hge H_c^M$. This phase diagram for the Bose-Fermi mixture is reminiscent of weakly attractive fermions with population imbalance, where the interacting fermions with opposite spins form singlet pairs.
Recent progress in the field of ultracold gases has allowed the creation of phase-segregated Bose-Fermi systems. We present a theoretical study of their collective excitations at zero temperature. As the fraction of fermion to boson particle number increases, the collective mode frequencies take values between those for a fully bosonic and those for a fully fermionic cloud, with damping in the intermediate region. This damping is caused by fermions which are resonantly driven at the interface.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا