Do you want to publish a course? Click here

Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors

71   0   0.0 ( 0 )
 Added by Douglas Natelson
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with observations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible explanations of this effect, in light of electronic structure calculations.



rate research

Read More

Kondo effect offers an important paradigm to understand strong correlated many-body physics. Although under intensive study, some of important properties of Kondo effect, in systems where both itinerant coupling and localized coupling play significant roles, are still elusive. Here we report evolution and universality of two stage Kondo effect, the simplest form where both couplings are important using single molecule transistor devices incorporating Manganese phthalocyanine molecules. Kondo temperature T* of two-stage Kondo effect evolves linearly against effective interaction of involved two spins. Observed Kondo resonance shows universal quadratic dependence with all adjustable parameters: temperature, magnetic field and biased voltages. The difference in nonequilibrium conductance of two stage Kondo effect to spin 1/2 Kondo effect is also identified. Messages learned in this study fill in directive experimental evidence of evolution of two-stage Kondo resonance near quantum phase transition point, and help in understanding sophisticated molecular electron spectroscopy in strong correlation regime.
We measure the spin splitting in a magnetic field $B$ of localized states in single-electron transistors using a new method, inelastic spin-flip cotunneling. Because it involves only internal excitations, this technique gives the most precise value of the Zeeman energy $Delta = ZeemanE$. In the same devices we also measure the splitting with $B$ of the Kondo peak in differential conductance. The Kondo splitting appears only above a threshold field as predicted by theory. However, the magnitude of the Kondo splitting at high fields exceeds $2 ZeemanE$ in disagreement with theory.
We have used the electromigration technique to fabricate a $rm{C_{{60}}}$ single-molecule transistor (SMT). We present a full experimental study as a function of temperature, down to 35 mK, and as a function of magnetic field up to 8 T in a SMT with odd number of electrons, where the usual spin-1/2 Kondo effect occurs, with good agreement with theory. In the case of even number of electrons, a low temperature magneto-transport study is provided, which demonstrates a Zeeman splitting of the zero-bias anomaly at energies well below the Kondo scale.
We present a general analytical formula and an ab initio study of quantum interference in multi-branch molecules. Ab initio calculations are used to investigate quantum interference in a benzene-1,2-dithiolate (BDT) molecule sandwiched between gold electrodes and through oligoynes of various lengths. We show that when a point charge is located in the plane of a BDT molecule and its position varied, the electrical conductance exhibits a clear interference effect, whereas when the charge approaches a BDT molecule along a line normal to the plane of the molecule and passing through the centre of the phenyl ring, interference effects are negligible. In the case of olygoynes, quantum interference leads to the appearance of a critical energy $E_c$, at which the electron transmission coefficient $T(E)$ of chains with even or odd numbers of atoms is independent of length. To illustrate the underlying physics, we derive a general analytical formula for electron transport through multi-branch structures and demonstrate the versatility of the formula by comparing it with the above ab-initio simulations. We also employ the analytical formula to investigate the current inside the molecule and demonstrate that large counter currents can occur within a ring-like molecule such as BDT, when the point charge is located in the plane of the molecule. The formula can be used to describe quantum interference and Fano resonances in structures with branches containing arbitrary elastic scattering regions connected to nodal sites.
140 - D. Hou , J. H. Wei 2011
The electrostatic gating effects on molecular transistors are investigated using the density functional theory (DFT) combined with the nonequilibrium Greens function (NEGF) method. When molecular energy levels are away from the Fermi energy they can be linearly shifted by the gate voltage, which is consistent with recent experimental observations [Nature 462, 1039 (2009)]. However, when they move near to the Fermi energy (turn-on process), the shifts become extremely small and almost independent of the gate voltage. The fact that the conductance may be beyond the gate control in the ON state will challenge the implementation of molecular transistors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا