No Arabic abstract
For the one-dimensional, extended Peierls--Hubbard model we calculate analytically the ground-state energy and the single-particle gap to second order in the Coulomb interaction for a given lattice dimerization. The comparison with numerically exact data from the Density-Matrix Renormalization Group shows that the ground-state energy is quantitatively reliable for Coulomb parameters as large as the band width. The single-particle gap can almost triple from its bare Peierls value before substantial deviations appear. For the calculation of the dominant optical excitations, we follow two approaches. In Wannier theory, we perturb the Wannier exciton states to second order. In two-step perturbation theory, similar in spirit to the GW-BSE approach, we form excitons from dressed electron-hole excitations. We find the Wannier approach to be superior to the two-step perturbation theory. For singlet excitons, Wannier theory is applicable up to Coulomb parameters as large as half band width. For triplet excitons, second-order perturbation theory quickly fails completely.
We consider the one-dimensional extended Hubbard model in the presence of an explicit dimerization $delta$. For a sufficiently strong nearest neighbour repulsion we establish the existence of a quantum phase transition between a mixed bond-order wave and charge-density wave phase from a pure bond-order wave phase. This phase transition is in the universality class of the two-dimensional Ising model.
A detailed study of the one-dimensional ionic Hubbard model with interaction $U$ is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing $U$. By a recently introduced continuous unitary transformation [Krull et al. Phys. Rev. B {bf 86}, 125113 (2012)] we are able to describe the system even close to the phase transition from BI to SDI although the bare perturbative series diverges before the transition is reached. First, the dispersion of single fermionic quasiparticles is determined in the full Brillouin zone. Second, we describe the binding phenomena between two fermionic quasiparticles leading to an $S=0$ and to an $S=1$ exciton. The latter corresponds to the lowest spin excitation and defines the spin gap which remains finite through the transition from BI to SDI. The former becomes soft at the transition indicating that the SDI corresponds to a condensate of these $S=0$ excitons. This view is confirmed by a BCS mean field theory for the SDI phase.
Using time-dependent density-matrix renormalization group, we study the time evolution of electronic wave packets in the one-dimensional extended Hubbard model with on-site and nearest neighbor repulsion, U and V, respectively. As expected, the wave packets separate into spin-only and charge-only excitations (spin-charge separation). Charge and spin velocities exhibit non-monotonic dependence on V. For small and intermediate values of V, both velocities increase with V. However, the charge velocity exhibits a stronger dependence than that of the spin, leading to a more pronounced spin-charge separation. Charge fractionalization, on the other hand, is weakly affected by V. The results are explained in terms of Luttinger liquid theory in the weak-coupling limit, and an effective model in the strong-coupling regime.
We investigate the $T=0$ phase diagram of a variant of the one-dimensional extended Hubbard model where particles interact via a finite-range soft-shoulder potential. Using Density Matrix Renormalization Group (DMRG) simulations, we evidence the appearance of Cluster Luttinger Liquid (CLL) phases, similarly to what first predicted in a hard-core bosonic chain [M. Mattioli, M. Dalmonte, W. Lechner, and G. Pupillo, Phys. Rev. Lett. 111, 165302]. As the interaction strength parameters change, we find different types of clusters, that encode the order of the ground state in a semi-classical approximation and give rise to different types of CLLs. Interestingly, we find that the conventional Tomonaga Luttinger Liquid (TLL) is separated by a critical line with a central charge $c=5/2$, along which the two (spin and charge) bosonic degrees of freedom (corresponding to $c=1$ each) combine in a supersymmetric way with an emergent fermionic excitation ($c=1/2$). We also demonstrate that there are no significant spin correlations.
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robust photoinduced in-gap state appears in the optical conductivity, depending on the parameters of the pulse. Here, by tuning its conditions, we maximize the overlap of the time-evolving wavefunction with excited states displaying the elusive bond-ordered wave of this model. Finally, we make a clear connection between the emergence of this order and the formation of the aforementioned in-gap state, suggesting the potential observation of purely electronic (i.e., not associated with a Peierls instability) bond-ordered waves in experiments involving molecular crystals.