No Arabic abstract
A detailed study of the one-dimensional ionic Hubbard model with interaction $U$ is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing $U$. By a recently introduced continuous unitary transformation [Krull et al. Phys. Rev. B {bf 86}, 125113 (2012)] we are able to describe the system even close to the phase transition from BI to SDI although the bare perturbative series diverges before the transition is reached. First, the dispersion of single fermionic quasiparticles is determined in the full Brillouin zone. Second, we describe the binding phenomena between two fermionic quasiparticles leading to an $S=0$ and to an $S=1$ exciton. The latter corresponds to the lowest spin excitation and defines the spin gap which remains finite through the transition from BI to SDI. The former becomes soft at the transition indicating that the SDI corresponds to a condensate of these $S=0$ excitons. This view is confirmed by a BCS mean field theory for the SDI phase.
We study the zero-temperature phase diagram of the half-filled one-dimensional ionic Hubbard model. This model is governed by the interplay of the on-site Coulomb repulsion and an alternating one-particle potential. Various many-body energy gaps, the charge-density-wave and bond-order parameters, the electric as well as the bond-order susceptibilities, and the density-density correlation function are calculated using the density-matrix renormalization group method. In order to obtain a comprehensive picture, we investigate systems with open as well as periodic boundary conditions and study the physical properties in different sectors of the phase diagram. A careful finite-size scaling analysis leads to results which give strong evidence in favor of a scenario with two quantum critical points and an intermediate spontaneously dimerized phase. Our results indicate that the phase transitions are continuous. Using a scaling ansatz we are able to read off critical exponents at the first critical point. In contrast to a bosonization approach, we do not find Ising critical exponents. We show that the low-energy physics of the strong coupling phase can only partly be understood in terms of the strong coupling behavior of the ordinary Hubbard model.
We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators, respectively. When these two energies are of the same order we find a metallic region. Charge and magnetic structure factors demonstrate the presence of antiferromagnetism only in the Mott region, although the externally imposed density modulation is present everywhere in the phase diagram. Away from half-filling, other insulating phases are found. Kinetic energy correlations do not give clear signals for the existence of a bond-ordered phase.
For the one-dimensional, extended Peierls--Hubbard model we calculate analytically the ground-state energy and the single-particle gap to second order in the Coulomb interaction for a given lattice dimerization. The comparison with numerically exact data from the Density-Matrix Renormalization Group shows that the ground-state energy is quantitatively reliable for Coulomb parameters as large as the band width. The single-particle gap can almost triple from its bare Peierls value before substantial deviations appear. For the calculation of the dominant optical excitations, we follow two approaches. In Wannier theory, we perturb the Wannier exciton states to second order. In two-step perturbation theory, similar in spirit to the GW-BSE approach, we form excitons from dressed electron-hole excitations. We find the Wannier approach to be superior to the two-step perturbation theory. For singlet excitons, Wannier theory is applicable up to Coulomb parameters as large as half band width. For triplet excitons, second-order perturbation theory quickly fails completely.
We present a numerical study of the charge dynamical structure factor N(k,omega) of a one-dimensional (1D) ionic Hubbard model in the Mott insulator phase. We show that the low-energy spectrum of N(k,omega) is expressed in terms of the spin operators for the spin degrees of freedom. Numerical results of N(k,omega) for the spin degrees of freedom, obtained by the Lanczos diagonalization method, well reproduce the low-energy spectrum of N(k,omega) of the 1D ionic Hubbard model. In addition, we show that these spectral peaks probe the dispersion of the spin-singlet excitations of the system and are observed in the wide parameter region of the MI phase.
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of these nonequilibrium states, by using numerical forward-propagation approaches to chains as long as 20 sites. For a class of typical states, we find excellent agreement with linear-response theory and unveil the existence of remarkably clean charge diffusion in the regime of strong particle-particle interactions. Moreover, we demonstrate that this diffusive behavior does not depend on certain details of our initial conditions, i.e., it occurs for five different realizations with random and nonrandom internal degrees of freedom, single and double occupation of the central site, and displacement of spin-up and spin-down particles.