No Arabic abstract
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on: collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.
We investigate the dynamics of Rydberg electrons excited from the ground state of ultracold atoms trapped in an optical lattice. We first consider a lattice comprising an array of double-well potentials, where each double well is occupied by two ultracold atoms. We demonstrate the existence of molecular states with equilibrium distances of the order of experimentally attainable inter-well spacings and binding energies of the order of 10^3 GHz. We also consider the situation whereby ground-state atoms trapped in an optical lattice are collectively excited to Rydberg levels, such that the charge-density distributions of neighbouring atoms overlap. We compute the hopping rate and interaction matrix elements between highly-excited electrons separated by distances comparable to typical lattice spacings. Such systems have tunable interaction parameters and a temperature ~10^{-4} times smaller than the Fermi temperature, making them potentially attractive for the study and simulation of strongly correlated electronic systems.
We theoretically investigate the enhanced localization of bosonic atoms by fermionic atoms in three-dimensional optical lattices and find a self-trapping of the bosons for attractive boson-fermion interaction. Because of this mutual interaction, the fermion orbitals are substantially squeezed, which results in a strong deformation of the effective potential for bosons. This effect is enhanced by an increasing bosonic filling factor leading to a large shift of the transition between the superfluid and the Mott-insulator phase. We find a nonlinear dependency of the critical potential depth on the boson-fermion interaction strength. The results, in general, demonstrate the important role of higher Bloch bands for the physics of attractively interacting quantum gas mixtures in optical lattices and are of direct relevance to recent experiments with 87Rb - 40K mixtures, where a large shift of the critical point has been found.
Experiments with cold atoms trapped in optical lattices offer the potential to realize a variety of novel phases but suffer from severe spatial inhomogeneity that can obscure signatures of new phases of matter and phase boundaries. We use a high temperature series expansion to show that compressibility in the core of a trapped Fermi-Hubbard system is related to measurements of changes in double occupancy. This core compressibility filters out edge effects, offering a direct probe of compressibility independent of inhomogeneity. A comparison with experiments is made.
We review the superfluid to Mott-insulator transition of cold atoms in optical lattices. The experimental signatures of the transition are discussed and the RPA theory of the Bose-Hubbard model briefly described. We point out that the critical behavior at the transition, as well as the prediction by the RPA theory of a gapped mode (besides the Bogoliubov sound mode) in the superfluid phase, are difficult to understand from the Bogoliubov theory. On the other hand, these findings appear to be intimately connected to the non-trivial infrared behavior of the superfluid phase as recently studied within the non-perturbative renormalization group.
We investigate different ground-state phases of attractive spin-imbalanced populations of fermions in 3-dimensional optical lattices. Detailed numerical calculations are performed using Hartree-Fock-Bogoliubov theory to determine the ground-state properties systematically for different values of density, spin polarization and interaction strength. We first consider the high density and low polarization regime, in which the effect of the optical lattice is most evident. We then proceed to the low density and high polarization regime where the effects of the underlying lattice are less significant and the system begins to resemble a continuum Fermi gas. We explore the effects of density, polarization and interaction on the character of the phases in each regime and highlight the qualitative differences between the two regimes. In the high-density regime, the order is found to be of Larkin-Ovchinnikov type, linearly oriented with one characteristic wave vector but varying in its direction with the parameters. At lower densities the order parameter develops more structures involving multiple wave vectors.