Do you want to publish a course? Click here

Dopant-modulated pair interaction in cuprate superconductors

178   0   0.0 ( 0 )
 Added by Tamara Nunner
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic structure inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positions of impurity atoms and various aspects of the local density of states such as the gap magnitude and the height of the coherence peaks. Our results imply that each dopant atom modulates the pair interaction on a length scale of order one lattice constant.



rate research

Read More

Recent low-temperature scanning tunnelling spectroscopy experiments on the surface of BSCCO-2212 have revealed a strong positive correlation between the position of localized resonances at -960 meV identified with interstitial oxygen dopants and the size of the local spectral gap. We review efforts to understand these correlations within a model where the dopants modulate the pair interaction on an atomic scale. We provide further evidence for this model by comparing the correlations between the dopants and the local density of states with experimental results.
Proper characterisation of investigated samples is vital when studying superconductivity as impurities and doping inhomogeneities can affect the physical properties of the measured system. We present a method where a polarised neutron imaging setup utilises the precession of spin-polarised neutrons in the presence of a trapped field in the superconducting sample to spatially map out the critical temperature for the phase transition between superconducting and non-superconducting states. We demonstrate this method on a superconducting crystal of the prototypical high-temperature superconductor (La,Sr)$_2$CuO$_4$. The results, which are backed up by complementary magnetic susceptibility measurements, show that the method is able to resolve minor variations in the transition temperature across the length of the LSCO crystal, caused by inhomogeneities in strontium doping.
When the Mott insulating state is suppressed by charge carrier doping, the pseudogap phenomenon emerges, where at the low-temperature limit, superconductivity coexists with some ordered electronic states. Within the framework of the kinetic-energy-driven superconductivity, the nature of the pair-density-wave order in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the onset of the pair-density-wave order does not produce an ordered gap, but rather a novel hidden order as a result of the interplay of the charge-density-wave order with superconductivity. As a consequence, this novel hidden pair-density-wave order as a subsidiary order parameter coexists with the charge-density-wave order in the superconducting-state, and is absent from the normal-state.
156 - D. X. Yao , E. W. Carlson 2008
Checkerboard patterns have been proposed in order to explain STM experiments on the cuprates BSCCO and Na-CCOC. However the presence of these patterns has not been confirmed by a bulk probe such as neutron scattering. In particular, simple checkerboard patterns are inconsistent with neutron scattering data, in that they have low energy incommsensurate (IC) spin peaks rotated 45 degrees from the direction of the charge IC peaks. However, it is unclear whether other checkerboard patterns can solve the problem. In this paper, we have studied more complicated checkerboard patterns (modulated checkerboards) by using spin wave theory and analyzed noncollinear checkerboards as well. We find that the high energy response of the modulated checkerboards is inconsistent with neutron scattering results, since they fail to exhibit a resonance peak at (pi,pi), which has recently been shown to be a universal feature of cuprate superconductors. We further argue that the newly proposed noncollinear checkerboard also lacks a resonance peak. We thus conclude that to date no checkerboard pattern has been proposed which satisfies both the low energy constraints and the high energy constraints imposed by the current body of experimental data in cuprate superconductors.
The mysterious pseudo-gap (PG) phase of cuprate superconductors has been the subject of intense investigation over the last thirty years, but without a clear agreement about its origin. Owing to a recent observation in Raman spectroscopy, of a precursor in the charge channel, on top of the well known fact of a precursor in the superconducting channel, we present here a novel idea: the PG is formed through a Higgs mechanism, where two kinds of preformed pairs, in the particle-particle and particle-hole channels, become entangled through a freezing of their global phase. Remarkably, this entanglement is equivalent to fractionalizing a Cooper pair density wave (PDW) into its elementary parts; the particle-hole pair, giving rise to both density modulations and current modulations, and the particle-particle counterpart, leading to the formation of Cooper pairs. From this perspective, the fractionalized PDW becomes the central object around the formation of the pseudo-gap. The locking of phases between the charge and superconducting modes gives a unique explanation for the unusual global phase coherence of short-range charge modulations, observed below $T_{c}$ on phase sensitive scanning tunneling microscopy (STM). A simple microscopic model enables us to estimate the mean-field values of the precursor gaps in each channel and the PG energy scale, and to compare them to the values observed in Raman scattering spectroscopy. We also discuss the possibility of a multiplicity of orders in the PG phase and give an overview of the phase diagram.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا