Do you want to publish a course? Click here

Design of the electronic structure of poly-MTO

56   0   0.0 ( 0 )
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polymeric methyltrioxorhenium (poly-MTO) is the first member of a new class of organometallic hybrids which adopts the structural motives and physical properties of classical perowskites in two dimensions. In this study we demonstrate how the electronic structure of poly-MTO can be tailored by intercalation of organic donor molecules such as tetrathiafulvalene (TTF). With increasing donor intercalation the metallic behavior of the parent compound, (CH$_{3}$)$_{0.92}$ReO$_{3} cdot x%$ TTF ($x = 0$) becomes suppressed leading to an insulator at donor concentrations $x$ larger than 50. Specific heat, electric resistance and magnetic susceptibility studies indicate that an increasing amount of TTF causes the itinerant electrons of the poly-MTO matrix to localize.



rate research

Read More

Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{infty} (poly-MTO), is the first member of a new class of organometallic hybrids which adopts the structural pattern and physical properties of classical perovskites in two dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be tailored by intercalation of organic donor molecules, such as tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF), and by the inorganic acceptor SbF$_3$. Integration of donor molecules leads to a more insulating behavior of poly-MTO, whereas SbF$_3$ insertion does not cause any significant change in the resistivity. The resistivity data of pure poly-MTO is remarkably well described by a two-dimensional electron system. Below 38 K an unusual resistivity behavior, similar to that found in doped cuprates, is observed: The resistivity initially increases approximately as $rho sim$ ln$(1/T$) before it changes into a $sqrt{T}$ dependence below 2 K. As an explanation we suggest a crossover from purely two-dimensional charge-carrier diffusion within the {ReO$_2$}$_{infty}$ planes at high temperatures to three-dimensional diffusion at low temperatures in a disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov correction). Furthermore, a linear positive magnetoresistance was found in the insulating regime, which is caused by spatial localization of itinerant electrons at some of the Re atoms, which formally adopt a $5d^1$ electronic configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent magnetization and specific heat measurements in various magnetic fields suggest that the electronic structure of poly-MTO can safely be approximated by a purely 2D conductor.
We propose the design of low strained and energetically favourable mono and bilayer graphene overlayer on anatase TiO$_2$ (001) surface and examined the electronic structure of the interface with the aid of first principle calculations. In the absence of hybridization between surface TiO$_2$ and graphene states, dipolar fluctuations govern the minor charge transfer across the interface. As a result, both the substrate and the overlayer retain their pristine electronic structure. The interface with the monolayer graphene retains its gapless linear band dispersion irrespective of the induced epitaxial strain. The potential gradient opens up a few meV bandgap in the case of Bernal stacking and strengthens the interpenetration of the Dirac cones in the case of hexagonal stacking of the bilayer graphene. The difference between the macroscopic average potential of the TiO$_2$ and graphene layer(s) in the heterostructure lies in the range 3 to 3.13 eV, which is very close to the TiO$_2$ bandgap ($sim$ 3.2 eV). Therefore, the proposed heterostructure will exhibit enhanced photo-induced charge transfer and the graphene component will serve as a visible light sensitizer.
New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.
Minuscule molecular forces can transform DNA into a structure that is elongated by more than half its original length. We demonstrate that this pronounced conformational transition is of relevance to ongoing experimental and theoretical efforts to characterize the conducting properties of DNA wires. We present quantum mechanical calculations for acidic, dry, poly(CG).poly(CG) DNA which has undergone elongation of up to 90 % relative to its natural length, along with a method for visualizing the effects of stretching on the electronic eigenstates. We find that overstretching leads to a drastic drop of the hopping matrix elements between localized occupied electronic states suggesting a dramatic decrease in the conductivity through holes.
We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا