Do you want to publish a course? Click here

Electronic Structure of Graphene/TiO$_2$ Interface: Design and Functional Perspectives

87   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose the design of low strained and energetically favourable mono and bilayer graphene overlayer on anatase TiO$_2$ (001) surface and examined the electronic structure of the interface with the aid of first principle calculations. In the absence of hybridization between surface TiO$_2$ and graphene states, dipolar fluctuations govern the minor charge transfer across the interface. As a result, both the substrate and the overlayer retain their pristine electronic structure. The interface with the monolayer graphene retains its gapless linear band dispersion irrespective of the induced epitaxial strain. The potential gradient opens up a few meV bandgap in the case of Bernal stacking and strengthens the interpenetration of the Dirac cones in the case of hexagonal stacking of the bilayer graphene. The difference between the macroscopic average potential of the TiO$_2$ and graphene layer(s) in the heterostructure lies in the range 3 to 3.13 eV, which is very close to the TiO$_2$ bandgap ($sim$ 3.2 eV). Therefore, the proposed heterostructure will exhibit enhanced photo-induced charge transfer and the graphene component will serve as a visible light sensitizer.



rate research

Read More

Ab initio calculations using the local spin density approximation and also including the Hubbard $U$ have been performed for three low energy configurations of the interface between LaAlO$_3$ and TiO$_2$-anatase. Two types of interfaces have been considered: LaO/TiO$_2$ and AlO$_2$/TiO, the latter with Ti-termination and therefore a missing oxygen. A slab-geometry calculation was carried out and all the atoms were allowed to relax in the direction normal to the interface. In all the cases considered, the interfacial Ti atom acquires a local magnetic moment and its formal valence is less than +4. When there are oxygen vacancies, this valence decreases abruptly inside the anatase slab while in the LaO/TiO$_2$ interface the changes are more gradual.
We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed.
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detailed investigation of the magnetic, electronic, and optical properties of transition-metal doped TNTs, based on hybrid density functional theory. In particular, we focus on the $3d$, the $4d$, as well as selected $5d$ transition-metal doped TNTs. Thereby, we are able to explain the enhanced optical activity and photocatalytic sensitivity observed in various experiments. We find, for example, that Cr- and W-doped TNTs can be employed for applications like water splitting and carbon dioxide reduction, and for spintronic devices. The best candidate for water splitting is Fe-doped TNT, in agreement with experimental observations. In addition, our findings provide valuable hints for future experimental studies of the ferromagnetic/spintronic behavior of metal-doped titania nanotubes.
The hyperfine structure of the interstitial muonium (Mu) in rutile (TiO$_2$, weakly $n$-type) has been identified by means of a muon spin rotation technique. The angle-resolved hyperfine parameters exhibit a tetragonal anisotropy within the $ab$ plane and axial anisotropy with respect to the $langle 001rangle$ ($hat{c}$) axis. This strongly suggests that the Mu is bound to O (forming an OH bond) at an off-center site within a channel along the $hat{c}$ axis, while the unpaired Mu electron is localized around the neighboring Ti site. The hyperfine parameters are quantitatively explained by a model that considers spin polarization of the unpaired electron at both the Ti and O sites, providing evidence for the formation of Mu as a Ti-O-Mu complex paramagnetic state. The disappearance of the Mu signal above $sim$10 K suggests that the energy necessary for the promotion of the unpaired electron to the conduction band by thermal activation is of the order of $10^1$ meV. These observations suggest that, while the electronic structure of Mu (and hence H) differs considerably from that of the conventional shallow level donor described by the effective mass model, Mu supplies a loosely bound electron, and thus, serves as a donor in rutile.
334 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are discussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا