Do you want to publish a course? Click here

Magnetic-field induced band-structure change in CeBiPt

83   0   0.0 ( 0 )
 Added by Jochen Wosnitza
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a field-induced change of the electronic band structure of CeBiPt as evidenced by electrical-transport measurements in pulsed magnetic fields. Above ~25 T, the charge-carrier concentration increases nearly 30% with a concomitant disappearance of the Shubnikov-de Haas signal. These features are intimately related to the Ce 4f electrons since for the non-4f compound LaBiPt the Fermi surface remains unaffected. Electronic band-structure calculations point to a 4f-polarization-induced change of the Fermi-surface topology.

rate research

Read More

Shubnikov--de Haas (SdH) and Hall-effect measurements of CeBiPt and LaBiPt reveal the presence of simple and very small Fermi surfaces with hole-like charge carriers for both semimetals. In the magnetic material, CeBiPt, we observe a strong temperature dependence of the SdH frequency. This highly unusual effect might be connected with an internal exchange field within the material and a strongly spin-dependent scattering of the charge carriers.
By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar non-collinear antiferromagnet Mn$_3$Ge caused by an application of hydrostatic pressure up to 5phantom{ }GPa. At ambient conditions the kagome layers of Mn atoms in Mn$_3$Ge order in a triangular 120$^{circ}$ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a non-coplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.
We report a magnetic x-ray scattering study of the field-induced multiferroic GdFe3(BO3)4. Resonant x-ray magnetic scattering at the Gd LII,III edges indicates that the Gd moments order at TN ~ 37 K. The magnetic structure is incommensurate below TN, with the incommensurability decreasing monotonically with decreasing temperature until a transition to a commensurate magnetic phase is observed at T ~ 10 K. Both the Gd and Fe moments undergo a spin reorientation transition at TSR ~ 9 K such that the moments are oriented along the crystallographic c axis at low temperatures. With magnetic field applied along the a axis, our measurements suggest that the field-induced polarization phase has a commensurate magnetic structure with Gd moments rotated ~45 degrees toward the basal plane, which is similar to the magnetic structure of the Gd subsystem observed in zero field between 9 and 10 K, and the Fe subsystem has a ferromagnetic component in the basal plane.
The metal-insulator transition (MIT) of BaVS3 is suppressed under pressure and above the critical pressure of p~2GPa the metallic phase is stabilized. We present the results of detailed magnetoresistivity measurements carried out at pressures near the critical value, in magnetic fields up to B=12T. We found that slightly below the critical pressure the structural tetramerization -- which drives the MIT -- is combined with the onset of magnetic correlations. If the zero-field transition temperature is suppressed to a sufficiently low value (T_MI<15K), the system can be driven into the metallic state by application of magnetic field. The main effect is not the reduction of T_MI with increasing B, but rather the broadening of the transition due to the applied magnetic field. We tentatively ascribe this phenomenon to the influence on the magnetic structure coupled to the bond-order of the tetramers.
We study vanadium spinels $A$V$_2$O$_4$ ($A$ = Cd, Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at $mu_0 H approx$ 40 T is observed in the single-crystal MgV$_2$O$_4$, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV$_2$O$_4$, the field-induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field-induced transition can be successfully explained by including the effects of the local trigonal crystal field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا