Do you want to publish a course? Click here

Gradual pressure-induced change in the magnetic structure of the non-collinear antiferromagnet Mn$_3$Ge

81   0   0.0 ( 0 )
 Added by Aleksandr Sukhanov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

By means of powder neutron diffraction we investigate changes in the magnetic structure of the coplanar non-collinear antiferromagnet Mn$_3$Ge caused by an application of hydrostatic pressure up to 5phantom{ }GPa. At ambient conditions the kagome layers of Mn atoms in Mn$_3$Ge order in a triangular 120$^{circ}$ spin structure. Under high pressure the spins acquire a uniform out-of-plane canting, gradually transforming the magnetic texture to a non-coplanar configuration. With increasing pressure the canted structure fully transforms into the collinear ferromagnetic one. We observed that magnetic order is accompanied by a noticeable magnetoelastic effect, namely, spontaneous magnetostriction. The latter induces an in-plane magnetostrain of the hexagonal unit cell at ambient pressure and flips to an out-of-plane strain at high pressures in accordance with the change of the magnetic structure.



rate research

Read More

We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn$_3$Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong preference for a spin structure with $E_{1g}$ symmetry relative to the $D_{6h}$ point group. We show that weak ferromagnetism is an inevitable consequence of the symmetry of the observed magnetic structure, and that sixth order anisotropy is needed to select a unique ground state.
We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering temperature of 370~K. The magnetic excitations have a 5-meV gap and display an anisotropic dispersive mode reaching $simeq 90$~meV at the boundaries of the magnetic Brillouin zone. The spectrum at the zone center shows two additional excitations that demonstrate characteristics of both magnons and phonons. The textit{ab initio} lattice-dynamics calculations show that these can be associated with the magnon-polaron modes resulting from the hybridization of the spin fluctuations and the low-energy optical phonons. The observed magnetoelastic coupling agrees with the previously found negative thermal expansion in this compound and resembles the features reported in the spectroscopic studies of other antiferromagnets with the similar noncollinear spin structures.
We propose that non-collinear magnetic order in quantum magnets can harbor a novel higher-order topological magnon phase with non-Hermitian topology and hinge magnon modes. We consider a three-dimensional system of interacting local moments on stacked-layers of honeycomb lattice. It initially favors a collinear magnetic order along an in-plane direction, which turns into a non-collinear order upon applying an external magnetic field perpendicular to the easy axis. We exploit the non-Hermitian nature of the magnon Hamiltonian to show that this field-induced transition corresponds to the transformation from a topological magnon insulator to a higher-order topological magnon state with a one-dimensional hinge mode. As a concrete example, we discuss the recently-discovered monoclinic phase of the thin chromium trihalides, which we propose as the first promising material candidate of the higher-order topological magnon phase.
Harnessing the unique properties of non-collinear antiferromagnets (AFMs) will be essential for exploiting the full potential of antiferromagnetic spintronics. Indeed, many of the effects enabling ferromagnetic spintronic devices have a corresponding counterpart in materials with non-collinear spin structure. In addition, new phenomena such as the magnetic spin Hall effect were experimentally observed in non-collinear AFMs, and the presence of the equivalent to the ferromagnetic spin transfer torque via spin polarized currents was theoretically predicted. In spite of these developments, an interpretation of the rich physical phenomena observed in non-collinear antiferromagnets is challenging, since the microscopic spin arrangement, the magnetic domain distribution, and the domain orientations have proven notoriously difficult to access experimentally. This is all the more problematic, as imaging and writing magnetic domains is of central importance for applications. Successful imaging is a basic requirement to experimentally confirm the spin transfer torque acting on non-collinear domain walls and therefore of eminent interest. Here, we demonstrate that the local magnetic structure of the non-collinear AFM Mn3Sn films can be imaged by scanning thermal gradient microscopy (STGM). The technique is based on scanning a laser spot over the samples surface, and recording the ensuing thermo-voltage. We image the magnetic structure at a series of different temperatures and show that at room temperature, the domain structure is not affected by the application of moderate magnetic fields. In addition to imaging, we establish a scheme for heat-assisted magnetic recording, using local laser heating in combination with magnetic fields to intentionally write domain patterns into the antiferromagnet.
Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn$_3$Ge as a reference system, the contributions to linear response phenomena arising solely from the chiral coplanar and non-coplanar spin configurations are investigated. Orbital moments, X-ray absorption, anomalous and spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied depending on a continuous variation of the polar angle relative to the Kagome planes of corner-sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-induced or topological contributions can be identified by suppressing the spin-orbit coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا