Do you want to publish a course? Click here

Hydrogen induced surface metallization of $beta$-SiC(100)-($3times 2$) revisited by DFT calculations

71   0   0.0 ( 0 )
 Added by Rosa DiFelice
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments on the silicon terminated $3times 2$ SiC(100) surface indicated an unexpected metallic character upon hydrogen adsorption. This effect was attributed to the bonding of hydrogen to a row of Si atoms and to the stabilization of a neighboring dangling bond row. Here, on the basis of Density-Functional calculations, we show that multiple-layer adsorption of H at the reconstructed surface is compatible with a different geometry: besides saturating the topmost Si dangling bonds, H atoms are adsorbed at rather unusual sites, textit{i.e.} stable bridge positions above third-layer Si dimers. The results thus suggest an alternative interpretation for the electronic structure of the metallic surface

rate research

Read More

One of the key challenges to realize controlled fusion energy is tritium self-sufficiency. The application of hydrogen permeation barrier (HPB) is considered to be necessary for tritium self-sufficiency. {alpha}-Al2O3 is currently a candidate material for HPB. However, a crucial issue for {alpha}-Al2O3 is that its permeability reduction factor (PRF) will dramatically drop after ion or neutron irradiations. At present, little is known about the relevant mechanism. In order to shed light on this issue, the kinetics and energetic changes of hydrogen on defected {alpha}-Al2O3 surfaces in comparison with perfect {alpha}-Al2O3 surfaces were studied by density functional theory. For perfect {alpha}-Al2O3 surfaces, the results show that the barrier for hydrogen migration from the outermost layer into the subsurface layer is the highest, making this migration step to be a rate limiting process. In contrast, surface point defects dramatically reduce this maximum barrier. Consequently, hydrogen can preferentially permeate into the interior of the material through surface defects. The findings can help explain the possible mechanism of significant decrease of PRF under radiation.
175 - Sam Azadi , Thomas D. Kuhne 2011
Being the simplest element with just one electron and proton the electronic structure of the Hydrogen atom is known exactly. However, this does not hold for the complex interplay between them in a solid and in particular not at high pressure that is known to alter the crystal as well as the electronic structure. Back in 1935 Wigner and Huntington predicted that at very high pressure solid molecular hydrogen would dissociate and form an atomic solid that is metallic. In spite of intense research efforts the experimental realization, as well as the theoretical determination of the crystal structure has remained elusive. Here we present a computational study showing that the distorted hexagonal P6$_3$/m structure is the most likely candidate for Phase III of solid hydrogen. We find that the pairing structure is very persistent and insulating over the whole pressure range, which suggests that metallization due to dissociation may precede eventual bandgap closure. Due to the fact that this not only resolve one of major disagreement between theory and experiment, but also excludes the conjectured existence of phonon-driven superconductivity in solid molecular hydrogen, our results involve a complete revision of the zero-temperature phase diagram of Phase III.
98 - Sam Azadi , N. D. Drummond , 2016
We present an accurate study of the static-nucleus electronic energy band gap of solid molecular hydrogen at high pressure. The excitonic and quasiparticle gaps of the $C2/c$, $Pc$, $Pbcn$, and $P6_3/m$ structures at pressures of 250, 300, and 350~GPa are calculated using the fixed-node diffusion quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body band gaps at the same density is found to be almost independent of system size and can therefore be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps with available experimental results, we demonstrate the important role played by nuclear quantum effects in the electronic structure of solid hydrogen. Our DMC results suggest that the metallization of high-pressure solid hydrogen occurs via a structural phase transition rather than band gap closure.
The evolution in the surface morphology of epitaxial graphene films and 6H-SiC(0001) substrates is studied by electron channeling contrast imaging. Whereas film thickness is determined by growth temperature only, increasing growth times at constant temperature affect both internal stress and film morphology. Annealing times in excess of 8-10 minutes lead to an increase in the mean square roughness of SiC step edges to which graphene films are pinned, resulting in compressively stressed films at room temperature. Shorter annealing times produce minimal changes in the morphology of the terrace edges and result in nearly stress-free films upon cooling to room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا