Do you want to publish a course? Click here

Evolution in Surface Morphology of Epitaxial Graphene Layers on SiC Induced by Controlled Structural Strain

203   0   0.0 ( 0 )
 Added by Nicola Ferralis
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The evolution in the surface morphology of epitaxial graphene films and 6H-SiC(0001) substrates is studied by electron channeling contrast imaging. Whereas film thickness is determined by growth temperature only, increasing growth times at constant temperature affect both internal stress and film morphology. Annealing times in excess of 8-10 minutes lead to an increase in the mean square roughness of SiC step edges to which graphene films are pinned, resulting in compressively stressed films at room temperature. Shorter annealing times produce minimal changes in the morphology of the terrace edges and result in nearly stress-free films upon cooling to room temperature.



rate research

Read More

The early stages of epitaxial graphene layer growth on the Si-terminated 6H-SiC(0001) are investigated by Auger electron spectroscopy (AES) and depolarized Raman spectroscopy. The selection of the depolarized component of the scattered light results in a significant increase in the C-C bond signal over the second order SiC Raman signal, which allows to resolve submonolayer growth, including individual, localized C=C dimers in a diamond-like carbon matrix for AES C/Si ratio of $sim$3, and a strained graphene layer with delocalized electrons and Dirac single-band dispersion for AES C/Si ratio $>$6. The linear strain, measured at room temperature, is found to be compressive, which can be attributed to the large difference between the coefficients of thermal expansion of graphene and SiC. The magnitude of the compressive strain can be varied by adjusting the growth time at fixed annealing temperature.
Epitaxial graphene layers were grown on the C-face of 4H- and 6H-SiC using an argon-mediated growth process. Variations in growth temperature and pressure were found to dramatically affect the morphological properties of the layers. The presence of argon during growth slowed the rate of graphene formation on the C-face and led to the observation of islanding. The similarity in the morphology of the islands and continuous films indicated that island nucleation and coalescence is the growth mechanism for C-face graphene.
Recent transport measurements on thin graphite films grown on SiC show large coherence lengths and anomalous integer quantum Hall effects expected for isolated graphene sheets. This is the case eventhough the layer-substrate epitaxy of these films implies a strong interface bond that should induce perturbations in the graphene electronic structure. Our DFT calculations confirm this strong substrate-graphite bond in the first adsorbed carbon layer that prevents any graphitic electronic properties for this layer. However, the graphitic nature of the film is recovered by the second and third absorbed layers. This effect is seen in both the (0001)and $(000bar{1})$ 4H SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. It causes the graphene to be doped and gives rise to a gap opening at the Dirac point after 3 carbon layers are deposited in agreement with recent ARPES experiments (T.Ohta et al, Science {bf 313} (2006) 951).
The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-area, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.
An in vacuo thermal desorption process has been accomplished to form epitaxial graphene (EG) on 4H- and 6H-SiC substrates using a commercial chemical vapor deposition reactor. Correlation of growth conditions and the morphology and electrical properties of EG are described. Raman spectra of EG on Si-face samples were dominated by monolayer thickness. This approach was used to grow EG on 50 mm SiC wafers that were subsequently fabricated into field effect transistors with fmax of 14 GHz.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا