The degree of entanglement of an electron with a hole in a vertically coupled self-assembled dot molecule is shown to be tunable by an external electric field. Using atomistic pseudopotential calculations followed by a configuration interaction many-body treatment of correlations, we calculate the electronic states, degree of entanglement and optical absorption. We offer a novel way to spectroscopically detect the magnitude of electric field needed to maximize the entanglement.
We present results of correlated pseudopotential calculations of an exciton in a pair of vertically stacked InGaAs/GaAs dots. Competing effects of strain, geometry, and band mixing lead to many unexpected features missing in contemporary models. The first four excitonic states are all optically active at small interdot separation, due to the broken symmetry of the single-particle states. We quantify the degree of entanglement of the exciton wavefunctions and show its sensitivity to interdot separation. We suggest ways to spectroscopically identify and maximize the entanglement of exciton states.
Polar textures have attracted significant attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second harmonic generation based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric-field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of non-chiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field controllable order parameter.
The impact of an applied electric field on the exchange coupling parameters has been investigated based on first-principles electronic structure calculations by means of the KKR Green function method. The calculations have been performed for a Fe film, free-standing and deposited on two different substrates, having 1 monolayer (ML) thickness to minimize the effect of screening of the electric field typical for metallic systems. By comparing the results for the free-standing Fe ML with those for Fe on the various substrates, we could analyze the origin of the field-induced change of the exchange interactions. Compared to the free-standing Fe ML, in particular rather pronounced changes have been found for the Fe/Pt(111) system due to the localized electronic states at the Fe/Pt interface, which are strongly affected by the electric field and which play an important role for the Fe-Fe exchange interactions.
We present the microscopic theory of improper multiferroicity in BiMnO3, which can be summarized as follows: (1) the ferroelectric polarization is driven by the hidden antiferromagnetic order in the otherwise centrosymmetric C2/c structure; (2) the relativistic spin-orbit interaction is responsible for the canted spin ferromagnetism. Our analysis is supported by numerical calculations of electronic polarization using Berrys phase formalism, which was applied to the low-energy model of BiMnO3 derived from the first-principles calculations. We explicitly show how the electric polarization can be controlled by the magnetic field and argue that BiMnO3 is a rare and potentially interesting material where ferroelectricity can indeed coexist and interplay with the ferromagnetism.
We report on the electric field control of magnetic phase transition temperatures in multiferroic Ni3V2O8 thin films. Using magnetization measurements, we find that the phase transition temperature to the canted antiferromagnetic state is suppressed by 0.2 K in an electric field of 30 MV/m, as compared to the unbiased sample. Dielectric measurements show that the transition temperature into the magnetic state associated with ferroelectric order increases by 0.2 K when the sample is biased at 25 MV/m. This electric field control of the magnetic transitions can be qualitatively understood using a mean field model incorporating a tri-linear coupling between the magnetic order parameters and spontaneous polarization.