Do you want to publish a course? Click here

All-electron Exact Exchange Treatment of Semiconductors: Effect of Core-valence Interaction on Band-gap and $d$-band Position

84   0   0.0 ( 0 )
 Added by Sangeeta Sharma
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exact exchange (EXX) Kohn-Sham calculations within an all-electron full-potential method are performed on a range of semiconductors and insulators (Ge, GaAs, CdS, Si, ZnS, C, BN, Ne, Ar, Kr and Xe). We find that the band-gaps are not as close to experiment as those obtained from previous pseudopotential EXX calculations. Full-potential band-gaps are also not significantly better for $sp$ semiconductors than for insulators, as had been found for pseudopotentials. The locations of $d$-band states, determined using the full-potential EXX method, are in excellent agreement with experiment, irrespective of whether these states are core, semi-core or valence. We conclude that the inclusion of the core-valence interaction is necessary for accurate determination of EXX Kohn-Sham band structures, indicating a possible deficiency in pseudopotential calculations.



rate research

Read More

Wide band gap semiconductors are essential for todays electronic devices and energy applications due to their high optical transparency, as well as controllable carrier concentration and electrical conductivity. There are many categories of materials that can be defined as wide band gap semiconductors. The most intensively investigated are transparent conductive oxides (TCOs) such as ITO and IGZO used in displays, carbides and nitrides used in power electronics, as well as emerging halides (e.g. CuI) and 2D electronic materials used in various optoelectronic devices. Chalcogen-based (S, Se, Te) wide band gap semiconductors are less heavily investigated but stand out due to their propensity for p-type doping, high mobilities, high valence band positions (i.e. low ionization potentials), and broad applications in electronic devices such as CdTe solar cells. This manuscript provides a review of wide band gap chalcogenide semiconductors. First, we outline general materials design parameters of high performing transparent conductors. We proceed to summarize progress in wide band gap (Eg > 2 eV) chalcogenide materials, such as II-VI MCh binaries, CuMCh2 chalcopyrites, Cu3MCh4 sulvanites, mixed anion layered CuMCh(O,F), and 2D materials, among others, and discuss computational predictions of potential new candidates in this family, highlighting their optical and electrical properties. We finally review applications of chalcogenide wide band gap semiconductors, e.g. photovoltaic and photoelectrochemical solar cells, transparent transistors, and diodes, that employ wide band gap chalcogenides as either an active or passive layer. By examining, categorizing, and discussing prospective directions in wide band gap chalcogenides, this review aims to inspire continued research on this emerging class of transparent conductors and to enable future innovations for optoelectronic devices.
The spin-orbit interaction can cause a nonvanishing density of states (DOS) within the minority-spin band gap of half-metals around the Fermi level. We examine the magnitude of the effect in Heusler alloys, zinc-blende half metals and diluted magnetic semiconductors, using first-principles calculations. We find that the ratio of spin-down to spin-up DOS at the Fermi level can range from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As) to 13% for MnBi.
The element-specific technique of x-ray magnetic circular dichroism (XMCD) is used to directly determine the magnitude and character of the valence band orbital magnetic moments in (III,Mn)As ferromagnetic semiconductors. A distinct dichroism is observed at the As K absorption edge, yielding an As 4p orbital magnetic moment of around -0.1 Bohr magnetons per valence band hole. This is strongly influenced by strain, indicating its crucial influence on the magnetic anisotropy. The dichroism at the Ga K edge is much weaker. The K edge XMCD signals for Mn and As both have positive sign, which indicates the important contribution of Mn 4p states to the Mn K edge spectra.
184 - C. Sliwa , T. Dietl 2008
Spin splitting of photoelectrons in p-type and electrons in n-type III-V Mn-based diluted magnetic semiconductors is studied theoretically. It is demonstrated that the unusual sign and magnitude of the apparent s-d exchange integral reported for GaAs:Mn arises from exchange interactions between electrons and holes bound to Mn acceptors. This interaction dominates over the coupling between electrons and Mn spins, so far regarded as the main source of spin-dependent phenomena. A reduced magnitude of the apparent s-d exchange integral found in n-type materials is explained by the presence of repulsive Coulomb potentials at ionized Mn acceptors and a bottleneck effect.
144 - J. Masek , F. Maca , J. Kudrnovsky 2010
We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parameterization and the full potential LDA+U calculations give a very similar picture of states near the Fermi energy which reside in an exchange-split sp-d hybridized valence band with dominant orbital character of the host semiconductor; this microscopic spectral character is consistent with the physical premise of the k.p kinetic-exchange model. On the other hand, the various models with a band structure comprising an impurity band detached from the valence band assume mutually incompatible microscopic spectral character. By adapting the tight-binding Anderson calculations individually to each of the impurity band pictures in the single Mn impurity limit and then by exploring the entire doping range we find that a detached impurity band does not persist in any of these models in ferromagnetic (Ga,Mn)As.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا