We report the synthesis and properties of two new insulating phases of SrFeO3-d with introduction of oxygen deficiencies in metallic SrFeO3 ; one with 0.15 < d < 0.19 (sample A)and the other above d = 0.19 (sample B). Sample A shows large negative magnetoresistance around the charged ordering (CO) temperature with magnetic anomalies seen in the temperature dependent resistivity,magnetization and M-H hysteresis loops. Sample B shows a smooth insulating behavior with no thermal hysteresis in the resistivity and with a small positive magnetoresistance. cac and cdc show multiple features associated with a frustrated magnetic order (helical) due to competing ferro- and antiferromagnetic interactions. The competing effects of ferro- and antiferromagnetic phases extend up to T ~ 230 K revealing a new high temperature scale in this system. These observations are discussed in the context of magnetic interactions associated with the varying Fe4+/Fe3+ ratio.
We use optical transient-grating spectroscopy to measure spin diffusion of optically oriented electrons in bulk, semi-insulating GaAs(100). Trapping and recombination do not quickly deplete the photoexcited population. The spin diffusion coefficient of 88 +/- 12 cm2/s is roughly constant at temperatures from 15 K to 150 K, and the spin diffusion length is at least 450 nm. We show that it is possible to use spin diffusion to estimate the electron diffusion coefficient. Due to electron-electron interactions, the electron diffusion is 1.4 times larger than the spin diffusion.
The correlated electron system SmNiO3 exhibits a metal-insulator phase transition at 130 {deg}C. Using an ionic liquid as an electric double layer (EDL) gate on three-terminal ultrathin SmNiO3 devices, we investigate gate control of the channel resistance and transition temperature. Resistance reduction is observed across both insulating and metallic phases with ~25% modulation at room temperature. We show that resistance modulation is predominantly due to electrostatic charge accumulation and not electrochemical doping by control experiments in inert and air en-vironments. We model the resistance behavior and estimate the accumulated sheet density (~1-2 x 10^14 cm^-2) and EDL capacitance (~12 {mu}F/cm^2).
Magnetic topological semimetals, the latest member of topological quantum materials, are attracting extensive attention as they may lead to topologically-driven spintronics. Currently, magnetotransport investigations on these materials are focused on anomalous Hall effect. Here, we report on the magnetoresistance anisotropy of topological semimetal CeBi, which has tunable magnetic structures arising from localized Ce 4f electrons and exhibits both negative and positive magnetoresistances, depending on the temperature. We found that the angle dependence of the negative magnetoresistance, regardless of its large variation with the magnitude of the magnetic field and with temperature, is solely dictated by the field-induced magnetization that is orientated along a primary crystalline axis and flops under the influence of a rotating magnetic field. The results reveal the strong interaction between conduction electrons and magnetization in CeBi. They also indicate that magnetoresistance anisotropy can be used to uncover the magnetic behavior and the correlation between transport phenomena and magnetism in magnetic topological semimetals.
The magnetization characteristic in a permalloy thin strip is investigated by electrically measuring the anisotropic magnetoresistance and ferromagnetic resonance in in-plane and out-of-plane configurations. Our results indicate that the magnetization vector can rotate in the film plane as well as out of the film plane by changing the intensity of external magnetic field of certain direction. The magnetization characteristic can be explained by considering demagnetization and magnetic anisotropy. Our method can be used to obtain the demagnetization factor, saturated magnetic moment and the magnetic anisotropy.
FeNi films with the stripe domain pattern are prepared by electrodeposition and sputtering methods. The composition, thickness, phase structure, magnetic domain, static magnetic parameters, and quality factor, as well as dynamic properties of the two films, are respectively performed. The results show the spin state in stripe domain were highly dependent on the direction of stripe domain, and the dynamic microwave properties are selectively excited, emerging the dynamic hysteresis, the acoustic mode, optical mode and perpendicular spin standing wave mode response. The results are further studied by micromagnetic simulation to illuminate the spin contribution of stripe domain for the different modes, and finally using the modified resonance equations to descript the microwave excitations of different modes as well as their resonance line width and permeability. The results may provide a method and thought for the possible applications of stripe domain in microwave excitation spintronics.