Do you want to publish a course? Click here

EPR study of some rare-earth ions (Dy3+, Tb3+ and Nd3+) in YBa2Cu3O6 compound

46   0   0.0 ( 0 )
 Added by Marat Gafurov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the low temperature X-band electron paramagnetic resonance (EPR) of YBa2Cu3O6 compounds with x = 6.0 doped with Dy3+, Tb3+, and Nd3+. The EPR spectra of Dy3+ and Tb3+ have been identified. The EPR of Tb3+ is used also to study the effect of suppression of high Tc superconductivity. The EPR of Nd3+ is probably masked by the intense resonance of Cu2+. All experimental EPR results compare well with theoretical estimations.



rate research

Read More

X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussed
524 - S. R. Saha , N. P. Butch , T. Drye 2011
Aliovalent rare earth substitution into the alkaline earth site of CaFe2As2 single-crystals is used to fine-tune structural, magnetic and electronic properties of this iron-based superconducting system. Neutron and single crystal x-ray scattering experiments indicate that an isostructural collapse of the tetragonal unit cell can be controllably induced at ambient pressures by choice of substituent ion size. This instability is driven by the interlayer As-As anion separation, resulting in an unprecedented thermal expansion coefficient of $180times 10^{-6}$ K$^{-1}$. Electrical transport and magnetic susceptibility measurements reveal abrupt changes in the physical properties through the collapse as a function of temperature, including a reconstruction of the electronic structure. Superconductivity with onset transition temperatures as high as 47 K is stabilized by the suppression of antiferromagnetic order via chemical pressure, electron doping or a combination of both. Extensive investigations are performed to understand the observations of partial volume-fraction diamagnetic screening, ruling out extrinsic sources such as strain mechanisms, surface states or foreign phases as the cause of this superconducting phase that appears to be stable in both collapsed and uncollapsed structures.
Recently the superconductivity has been discovered in the rock-salt structured binary lanthanum monoxide LaO through the state-of-the-art oxide thin-film epitaxy. This work reveals the normal state of superconducting LaO to be a $Z_2$ nontrivial topological metal that the Dirac point protected by the crystal symmetry is located at around the Fermi energy. By analysing the orbital characteristics, the nature of topological band structure of LaO originates from the intra-atomic transition in energy from outer shell La 5$d$ to inner shell 4$f$ orbitals driven by the strong octahedral crystal-field. Furthermore, the appearance of novel surface states unambiguously demonstrates the topological signature of LaO. Our theoretical findings not only shed light into the understanding of exotic quantum behaviors in LaO superconductor with intimate correlation between 4$f$ and 5$d$ orbitals in La, but also provide an exciting platform to explore the interplay of intriguing nontrivial topology and superconductivity.
Electron paramagnetic resonance experiments on doped Yb3+ ions in YBaCuO compounds with different oxygen contents have been made. We have observed the strong temperature dependence of the EPR linewidth in the all investigated samples caused by the Raman processes of spin-lattice relaxation. The spin-lattice relaxation rate anomaly revealed near TC in the superconducting species can be assigned to the phonon density spectrum changes
New germanium-platinum compounds with the filled-skutterudite crystal structure were synthesized. The structure and composition were investigated by X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific heat, and electrical resistivity measurements evidence superconductivity in LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and superconducting states were established. Strong coupling and a crystal electric field singlet groundstate is found for the Pr compound. Electronic structure calculations show a large density of states at the Fermi level. Similar behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا