Do you want to publish a course? Click here

Delay Induced Excitability

52   0   0.0 ( 0 )
 Added by Th. Busch
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the stochastic dynamics of a bistable system under the influence of time-delayed feedback. Assuming an asymmetric potential, we show the existence of a regime in which the systems dynamic displays excitability by calculating the relevant residence time distributions and correlation times. Experimentally we then observe this behaviour in the polarization dynamics of a vertical cavity surface emitting laser with opto-electronic feedback. Extending these observations to two-dimensional systems with dispersive coupling we finally show numerically that delay induced excitability can lead to the appearance of propagating wave-fronts and spirals.



rate research

Read More

Ensemble averages of a stochastic model show that, after a formation stage, the tips of active blood vessels in an angiogenic network form a moving two dimensional stable diffusive soliton, which advances toward sources of growth factor. Here we use methods of multiple scales to find the diffusive soliton as a solution of a deterministic equation for the mean density of active endothelial cells tips. We characterize the diffusive soliton shape in a general geometry, and find that its vector velocity and the trajectory of its center of mass along curvilinear coordinates solve appropriate collective coordinate equations. The vessel tip density predicted by the soliton compares well with that obtained by ensemble averages of simulations of the stochastic model.
We show that excitability is generic in systems displaying dissipative solitons when spatial inhomogeneities and drift are present. Thus, dissipative solitons in systems which do not have oscillatory states, such as the prototypical Swift-Hohenberg equation, display oscillations and Type I and II excitability when adding inhomogeneities and drift to the system. This rich dynamical behavior arises from the interplay between the pinning to the inhomogeneity and the pulling of the drift. The scenario presented here provides a general theoretical understanding of oscillatory regimes of dissipative solitons reported in semiconductor microresonators. Our results open also the possibility to observe this phenomenon in a wide variety of physical systems.
118 - E. Khain , Y. T. Lin , 2010
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic effect. Stochastic reaction-diffusion processes also show front propagation which coincides with the deterministic effect in the limit of small fluctuations (usually, large populations). However, for larger fluctuations propagation can be affected. We give an example, based on the classic spruce-budworm model, where the direction of wave propagation, i.e., the relative stability of two phases, can be reversed by fluctuations.
The conserved Kuramoto-Sivashinsky (CKS) equation, u_t = -(u+u_xx+u_x^2)_xx, has recently been derived in the context of crystal growth, and it is also strictly related to a similar equation appearing, e.g., in sand-ripple dynamics. We show that this equation can be mapped into the motion of a system of particles with attractive interactions, decaying as the inverse of their distance. Particles represent vanishing regions of diverging curvature, joined by arcs of a single parabola, and coalesce upon encounter. The coalescing particles model is easier to simulate than the original CKS equation. The growing interparticle distance ell represents coarsening of the system, and we are able to establish firmly the scaling ell(t) sim sqrt{t}. We obtain its probability distribution function, g(ell), numerically, and study it analytically within the hypothesis of uncorrelated intervals, finding an overestimate at large distances. Finally, we introduce a method based on coalescence waves which might be useful to gain better analytical insights into the model.
We introduce a model of interacting lattices at different resolutions driven by the two-dimensional Ising dynamics with a nearest-neighbor interaction. We study this model both with tools borrowed from equilibrium statistical mechanics as well as non-equilibrium thermodynamics. Our findings show that this model keeps the signature of the equilibrium phase transition. Moreover the critical temperature of the equilibrium models correspond to the state maximizing the entropy and delimits two out-of-equilibrium regimes, one satisfying the Onsager relations for systems close to equilibrium and one resembling convective turbulent states. Since the model preserves the entropy and energy fluxes in the scale space, it seems a good candidate for parametric studies of out-of-equilibrium turbulent systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا