Do you want to publish a course? Click here

Zn and Ni doping effects on the low-energy spin excitations in La$_{1.85}$Sr$_{0.15}$CuO$_{4}$

71   0   0.0 ( 0 )
 Added by Maiko Kofu
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Impurity effects of Zn and Ni on the low-energy spin excitations were systematically studied in optimally doped La1.85Sr0.15Cu1-yAyO4 (A=Zn, Ni) by neutron scattering. Impurity-free La1.85Sr0.15CuO4 shows a spin gap of 4meV below Tc in the antiferromagnetic(AF) incommensurate spin excitation. In Zn:y=0.004, the spin excitation shows a spin gap of 3meV below Tc. In Zn:y=0.008 and Zn:y=0.011, however, the magnetic signals at 3meV decrease below Tc and increase again at lower temperature, indicating an in-gap state. In Zn:y=0.017, the low-energy spin state remains unchanged with decreasing temperature, and elastic magnetic peaks appear below 20K then exponentially increase. As for Ni:y=0.009 and Ni:y=0.018, the low-energy excitations below 3meV and 2meV disappear below Tc. The temperature dependence at 3meV, however, shows no upturn in constrast with Zn:y=0.008 and Zn:y=0.011, indicating the absence of in-gap state. In Ni:y=0.029, the magnetic signals were observed also at 0meV. Thus the spin gap closes with increasing Ni. Furthermore, as omega increases, the magnetic peak width broadens and the peak position, i.e. incommensurability, shifts toward the magnetic zone center (pi pi). We interpret the impurity effects as follows: Zn locally makes a non-superconducting island exhibiting the in-gap state in the superconducting sea with the spin gap. Zn reduces the superconducting volume fraction, thus suppressing Tc. On the other hand, Ni primarily affects the superconducting sea, and the spin excitations become more dispersive and broaden with increasing energy, which is recognized as a consequence of the reduction of energy scale of spin excitations. We believe that the reduction of energy scale is relevant to the suppression of Tc.



rate research

Read More

We study superconducting properties in multilayer thin films consisting of superconducting La$_{1.85}$Sr$_{0.15}$CuO$_4$ (LSCO) and Mott insulator Sr$_2$IrO$_4$ (SIO) and report enhanced superconductivity in optimized sample. These multilayer heterostructures show an increase in superconducting transition temperature ($T_C$) as compared to the single layer LSCO films. The temperature dependence of SIO single layer is also investigated under thermal activation, Arrhenius-type behaviour, and variable-range hopping mechanisms for different temperature regimes. The decrease in $T_C$ beyond an optimum thickness of LSCO in these multilayers is analyzed in the framework of a model based on the assumption of induced superconductivity in SIO-LSCO interface due to the doping of La and/or oxygen deficiencies into SIO layers
Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd$_text{1.85}$Ce$_text{0.15}$CuO$_text{4}$ and superconducting hole-doped La$_text{1.85}$Sr$_text{0.15}$CuO$_text{4}$ thin films, the latter being the top layer. On the ramp, a new growth mode of La$_text{1.85}$Sr$_text{0.15}$CuO$_text{4}$ with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.
388 - T. Adachi , N. Oki , Risdiana 2008
We have investigated effects of Zn and Ni on the Cu-spin dynamics and superconductivity from the zero-field muon-spin-relaxation (ZF-muSR) and magnetic-susceptibility, chi, measurements for La_2-x_Sr_x_Cu_1-y_(Zn,Ni)_y_O_4_ with x=0.15-0.20, changing y up to 0.10 in fine step. In the optimally doped x=0.15, it has been concluded that the formation of a magnetic order requires a larger amount of Ni than that of Zn, which is similar to our previous results of x=0.13. From the estimation of volume fractions of superconducting (SC) and magnetic regions, it has been found for x=0.15 that the SC region is in rough correspondence to the region where Cu spins fluctuate fast beyond the muSR frequency window for both Zn- and Ni-substituted samples. According to the stripe model, it follows that, even for x=0.15, the dynamical stripe correlations of spins and holes are pinned and localized around Zn and Ni, leading to the formation of the static stripe order and the suppression of superconductivity. These may indicate an importance of the dynamical stripe in the appearance of the high-T_c_ superconductivity in the hole-doped cuprates. In the overdoped regime of x=0.18 and 0.20, on the other hand, the SC region seems to be in rough correspondence to the region where Cu spins fluctuate fast beyond the muSR frequency window, though it appears that the Cu-spin dynamics and superconductivity are affected by the phase separation into SC and normal-state regions.
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results support the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano lineshape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high Tc superconductors.
We studied the critical state stability in a large cubic sample of a single crystalline La(1.85)Sr(0.15)CuO(4) for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop in dynamic conditions characterized by significantly lower magnetic diffusivity than the thermal one. In this case, critical state stability depends strongly on cooling conditions. We compared predictions of the isothermal model and of the model for the weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with an increase of sweep rate of the external magnetic field. We also investigated the influence of external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity proportional to the flux flow resistivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا