Do you want to publish a course? Click here

Influence of crystal anisotropy on the critical state stability and flux jumps dynamics in a single crystal of La(1.85)Sr(0.15)CuO(4)

108   0   0.0 ( 0 )
 Added by Adam Nabialek
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We studied the critical state stability in a large cubic sample of a single crystalline La(1.85)Sr(0.15)CuO(4) for different sample orientations with respect to the external magnetic field as well as the dynamics of the flux jumps. It is shown that thermomagnetic avalanches develop in dynamic conditions characterized by significantly lower magnetic diffusivity than the thermal one. In this case, critical state stability depends strongly on cooling conditions. We compared predictions of the isothermal model and of the model for the weakly cooled sample with experimental results. In both models, the field of the first flux jump decreases with an increase of sweep rate of the external magnetic field. We also investigated the influence of external magnetic field on the dynamics of the following stages of the thermomagnetic avalanche. It is shown that the dynamics of the flux jumps is correlated with the magnetic diffusivity proportional to the flux flow resistivity.



rate research

Read More

70 - M. Kofu , H. Kimura , K. Hirota 2004
Impurity effects of Zn and Ni on the low-energy spin excitations were systematically studied in optimally doped La1.85Sr0.15Cu1-yAyO4 (A=Zn, Ni) by neutron scattering. Impurity-free La1.85Sr0.15CuO4 shows a spin gap of 4meV below Tc in the antiferromagnetic(AF) incommensurate spin excitation. In Zn:y=0.004, the spin excitation shows a spin gap of 3meV below Tc. In Zn:y=0.008 and Zn:y=0.011, however, the magnetic signals at 3meV decrease below Tc and increase again at lower temperature, indicating an in-gap state. In Zn:y=0.017, the low-energy spin state remains unchanged with decreasing temperature, and elastic magnetic peaks appear below 20K then exponentially increase. As for Ni:y=0.009 and Ni:y=0.018, the low-energy excitations below 3meV and 2meV disappear below Tc. The temperature dependence at 3meV, however, shows no upturn in constrast with Zn:y=0.008 and Zn:y=0.011, indicating the absence of in-gap state. In Ni:y=0.029, the magnetic signals were observed also at 0meV. Thus the spin gap closes with increasing Ni. Furthermore, as omega increases, the magnetic peak width broadens and the peak position, i.e. incommensurability, shifts toward the magnetic zone center (pi pi). We interpret the impurity effects as follows: Zn locally makes a non-superconducting island exhibiting the in-gap state in the superconducting sea with the spin gap. Zn reduces the superconducting volume fraction, thus suppressing Tc. On the other hand, Ni primarily affects the superconducting sea, and the spin excitations become more dispersive and broaden with increasing energy, which is recognized as a consequence of the reduction of energy scale of spin excitations. We believe that the reduction of energy scale is relevant to the suppression of Tc.
We study superconducting properties in multilayer thin films consisting of superconducting La$_{1.85}$Sr$_{0.15}$CuO$_4$ (LSCO) and Mott insulator Sr$_2$IrO$_4$ (SIO) and report enhanced superconductivity in optimized sample. These multilayer heterostructures show an increase in superconducting transition temperature ($T_C$) as compared to the single layer LSCO films. The temperature dependence of SIO single layer is also investigated under thermal activation, Arrhenius-type behaviour, and variable-range hopping mechanisms for different temperature regimes. The decrease in $T_C$ beyond an optimum thickness of LSCO in these multilayers is analyzed in the framework of a model based on the assumption of induced superconductivity in SIO-LSCO interface due to the doping of La and/or oxygen deficiencies into SIO layers
Scanning nano-focused X-ray diffraction (nXRD) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are used to investigate the crystal structure of ramp-edge junctions between superconducting electron-doped Nd$_text{1.85}$Ce$_text{0.15}$CuO$_text{4}$ and superconducting hole-doped La$_text{1.85}$Sr$_text{0.15}$CuO$_text{4}$ thin films, the latter being the top layer. On the ramp, a new growth mode of La$_text{1.85}$Sr$_text{0.15}$CuO$_text{4}$ with a 3.3 degree tilt of the c-axis is found. We explain the tilt by developing a strain accommodation model that relies on facet matching, dictated by the ramp angle, indicating that a coherent domain boundary is formed at the interface. The possible implications of this growth mode for the creation of artificial domains in morphotropic materials are discussed.
We report $^{63, 65}$Cu-NMR spectroscopy and Knight shift measurements on a single crystal of the electron-doped high-$T_{c}$ superconductor Pr$_{1.85}$Ce$_{0.15}$CuO$_{4-y}$ (PCCO) with an applied magnetic field ($H$) up to 26.42 T. A very small NQR frequency is obtained with the observation of the spectrum, which shows an extremely wide continuous distribution of it that becomes significant narrower below 20 K at $H$ $parallel$ $c$ where the superconductivity is completely suppressed, indicating a significant change in the charge distribution at the Cu site, while the corresponding changes at $H$ $perp$ $c$ is negligible when the superconductivity is present or not fully suppressed. The Knight shift and central linewidth are proportional to the applied magnetic field with a high anisotropy. We find that the magnitude of the internal static magnetic field at the copper is dominated by the anisotropic Cu$^{2+}$ 3$d$-orbital contributions, while its weak temperature-dependence is mainly determined by the isotropic contact hyperfine coupling to the paramagnetic Pr$^{3+}$ spins, which also gives rise to the full distribution of the internal static magnetic field at the copper for $H$ $perp$ $c$. This internal static electric and magnetic field environment at the copper is very different from that in the hole-doped cuprates, and may provide new insight into the understanding of high-$T_{c}$ superconductivity. Other experimental techniques are needed to verify whether the observed significant narrowing of the charge distribution at the Cu site with $H$ $parallel$ $c$ is caused by the charge ordering (CO) [E. H. da Silva Neto $et ~al.$, to be published in Science] cite{ehdsn} or a new type of charge modulation.
Infrared reflectivity measurements, using p-polarized light at a grazing angle of incidence, show an increased sensitivity to the optical conductivity of highly reflecting superconducting materials. We demonstrate that when this measurement technique is applied to the conventional s-wave superconductor NbN, the results are in perfect agreement with BCS theory. For the in-plane response of a La$_{1.85}$Sr$_{0.15}$CuO$_4$ single crystal, in the superconducting state, we find a reduction of the optical conductivity in the frequency range below 20 meV. The observed frequency dependence excludes an isotropic s-wave gap, but agrees well with model calculations assuming a d-wave order parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا